new KeyValuePair <uint32,uint32 =“”>(i,j).GetHashCode();高重复率</uint32,>

时间:2012-09-29 23:16:41

标签: .net dictionary gethashcode

为了寻找词典的快速复合键我遇到了异常,我无法理解也无法证明。

在有限的测试中

Dictionary<KeyValuePair<UInt32, UInt32>, string>

慢得多(200:1)
Dictionary<KeyValuePair<UInt16, UInt16>, string>

测试从0到1000的两个循环 填充然后包含密钥

         Poplulate     ContainsKey  
UInt32    92085         86578  
UInt16     2201           431

问题在于

new KeyValuePair<UInt32, UInt32>(i, j).GetHashCode();

产生许多重复。
在循环i和j 1024中,仅创建1024个唯一散列值。

基于来自CasperOne的雪崩评论尝试了i * 31和j * 97(两个素数),这导致105280在1024X1024上独一无二。仍然有很多重复。 CasperOne我知道这与随机不一样。但随机输入并不是我的工作。 GetHashCode()应该随机化输出。

为什么重复次数很多?

上的相同循环
new KeyValuePair<UInt16, UInt16>(i, j).GetHashCode();

产生1024 X 1024个唯一哈希码(完美)。

Int32有同样的问题。

这些重复哈希值kill

Dictionary<KeyValuePair<UInt32, UInt32>, string> 

与Int16相比,元组也会产生很多重复,它在Int32中不会降级。

生成原始KVP和原始KPV.GetHashCode的时间类似。

与HashSet相同的异常。

Dictionary<KeyValuePair<UInt32, UInt32>, string> dKVPu32 = new Dictionary<KeyValuePair<UInt32, UInt32>, string>();
Dictionary<KeyValuePair<UInt16, UInt16>, string> dKVPu16 = new Dictionary<KeyValuePair<UInt16, UInt16>, string>();
KeyValuePair<UInt32, UInt32> kvpUint32;
KeyValuePair<UInt16, UInt16> kvpUint16;
int range = 1000;
Int32 hashCode;
HashSet<Int32> kvpUint32Hash = new HashSet<Int32>();
HashSet<Int32> kvpUint16Hash = new HashSet<Int32>();

Stopwatch sw = new Stopwatch();
sw.Start();
for (UInt32 i = 0; i < range; i++)
{
    for (UInt32 j = 0; j < range; j++)
    {
        kvpUint32 = new KeyValuePair<UInt32, UInt32>(i, j);
    }
}
Console.WriteLine("UInt32  raw " + sw.ElapsedMilliseconds.ToString());
//  7
sw.Restart();
for (UInt16 i = 0; i < range; i++)
{
    for (UInt16 j = 0; j < range; j++)
    {
        kvpUint16 = new KeyValuePair<UInt16, UInt16>(i, j);
    }
}
Console.WriteLine("UInt16  raw " + sw.ElapsedMilliseconds.ToString());
//  6
sw.Restart();
for (UInt32 i = 0; i < range; i++)
{
    for (UInt32 j = 0; j < range; j++)
    {
        hashCode = new KeyValuePair<UInt32, UInt32>(i, j).GetHashCode();
        kvpUint32Hash.Add(hashCode);
    }
}
Console.WriteLine("UInt32  GetHashCode " + sw.ElapsedMilliseconds.ToString() + "  unique count " + kvpUint32Hash.Count.ToString());
//  285   1024
sw.Restart();
for (UInt16 i = 0; i < range; i++)
{
    for (UInt16 j = 0; j < range; j++)
    {
        hashCode = new KeyValuePair<UInt16, UInt16>(i, j).GetHashCode();
        kvpUint16Hash.Add(hashCode);
    }
}
Console.WriteLine("UInt16  GetHashCode " + sw.ElapsedMilliseconds.ToString() + "  unique count " + kvpUint16Hash.Count.ToString());
//  398 1000000
sw.Restart();
Console.ReadLine();
for (UInt32 i = 0; i < range; i++)
{
    for (UInt32 j = 0; j < range; j++)
    {
        dKVPu32.Add(new KeyValuePair<UInt32, UInt32>(i, j), String.Format("{0} {1}", i.ToString(), j.ToString()));
    }
}
Console.WriteLine("hsKVPu32 pop " + sw.ElapsedMilliseconds.ToString());
//  92085
sw.Restart();
for (UInt32 i = 0; i < range; i++)
{
    for (UInt32 j = 0; j < range; j++)
    {
        if (!dKVPu32.ContainsKey(new KeyValuePair<UInt32, UInt32>(i, j))) Debug.WriteLine("Opps"); ;
    }
}
Console.WriteLine("hsKVPu32 find " + sw.ElapsedMilliseconds.ToString());
//  86578
dKVPu32.Clear();
dKVPu32 = null;
GC.Collect();
sw.Restart();
for (UInt16 i = 0; i < range; i++)
{
    for (UInt16 j = 0; j < range; j++)
    {
        dKVPu16.Add(new KeyValuePair<UInt16, UInt16>(i, j), String.Format("{0} {1}", i.ToString(), j.ToString()));
    }
}
Console.WriteLine("hsKVPu16 pop " + sw.ElapsedMilliseconds.ToString());
//   2201
sw.Restart();
for (UInt16 i = 0; i < range; i++)
{
    for (UInt16 j = 0; j < range; j++)
    {
        if (!dKVPu16.ContainsKey(new KeyValuePair<UInt16, UInt16>(i, j))) Debug.WriteLine("Opps"); ;
    }
}
sw.Stop();
Console.WriteLine("hsKVPu16 find " + sw.ElapsedMilliseconds.ToString());
//  431

P.S。最快的是打包.E.G。 ((UInt32)int1&lt;&lt; 16)| INT2;

第一个UInt32列的哈希值等于接下来两个的KVP哈希值。

2281371105 8 992
2281371104 8 993
2281371107 8 994

2281371145 0 0
2281371147 0 2
2281371149 0 4
2281371151 0 6
2281371137 0 8

2281371144 0 1
2281371146 0 3
2281371148 0 5
2281371150 0 7
2281371136 0 9

2281371144 1 0
2281371145 1 1 2281371146 1 2
2281371147 1 3
2281371148 1 4
2281371149 1 5
2281371150 1 6
2281371151 1 7
2281371136 1 8
2281371137 1 9

2281371147 2 0
2281371146 2 1 2281371144 2 3
2281371151 2 4
2281371150 2 5
2281371149 2 6
2281371148 2 7
2281371139 2 8

我发现的唯一模式是总和或差异或KVP匹配 但找不到何时总和以及何时减去的模式 这是一个糟糕的哈希,所以知道它是什么没什么价值。

4 个答案:

答案 0 :(得分:8)

由于GetHashCode返回Int32,因此每对Int16 s(或UInt16 s)都可以轻松返回唯一值。使用一对Int32 s,您需要以某种方式组合这些值以与您的设计兼容。

KeyValuePair不会覆盖GetHashCode(),因此您只是使用ValueType.GetHashCode()的默认实现,其文档说明如下:

  

(来自:http://msdn.microsoft.com/en-us/library/system.valuetype.gethashcode.aspx

     

如果调用派生类型的GetHashCode方法,则返回值不太可能   适合用作哈希表中的键。另外,如果值为一个或多个   这些字段的更改,返回值可能不适合用作a中的键   哈希表。在任何一种情况下,请考虑编写自己的GetHashCode实现   更接近地表示类型的哈希码概念的方法。

由于KeyValuePair未覆盖GetHashCode(),我认为它不打算用作Dictionary密钥。

此外,根据this questionthis C# codeValueType.GetHashCode()的默认实现只是选择第一个非静态字段,并返回其GetHashCode()方法的结果。这解释了KeyValuePair<UInt32, UInt32>的大量重复项,但它没有解释KeyValuePair<UInt16, UInt16>缺少重复项。

我的猜测是,对于KeyValuePair<UInt32, UInt32>GetHashCode()只返回第一个值的GetHashCode(),而KeyValuePair<UInt16, UInt16>GetHashCode()正在组合值导致每对值都有唯一的哈希值,因为这样做是可能的,也是直接的。

答案 1 :(得分:7)

首先,我们可以省去这方面的时间方面 - 我觉得这对于哈希冲突真的只是 ,因为很明显这会破坏性能。

所以,问题是为什么KeyValuePair<uint, uint>的哈希冲突多于KeyValuePair<ushort, ushort>。为了帮助我们了解更多信息,我写了以下简短程序:

using System;
using System.Collections.Generic;

class Program
{
    const int Sample1 = 100;
    const int Sample2 = 213;

    public static void Main()
    {
        Display<uint, ushort>();
        Display<ushort, ushort>();
        Display<uint, uint>();
        Display<ushort, uint>();
    }

    static void Display<TKey, TValue>()
    {
        TKey key1 = (TKey) Convert.ChangeType(Sample1, typeof(TKey));
        TValue value1 = (TValue) Convert.ChangeType(Sample1, typeof(TValue));
        TKey key2 = (TKey) Convert.ChangeType(Sample2, typeof(TKey));
        TValue value2 = (TValue) Convert.ChangeType(Sample2, typeof(TValue));

        Console.WriteLine("Testing {0}, {1}", typeof(TKey).Name, typeof(TValue).Name);
        Console.WriteLine(new KeyValuePair<TKey, TValue>(key1, value1).GetHashCode());
        Console.WriteLine(new KeyValuePair<TKey, TValue>(key1, value2).GetHashCode());
        Console.WriteLine(new KeyValuePair<TKey, TValue>(key2, value1).GetHashCode());
        Console.WriteLine(new KeyValuePair<TKey, TValue>(key2, value2).GetHashCode());
        Console.WriteLine();
    }
}

我机器上的输出是:

Testing UInt32, UInt16
-1888265981
-1888265981
-1888265806
-1888265806

Testing UInt16, UInt16
-466800447
-459525951
-466800528
-459526032

Testing UInt32, UInt32
958334947
958334802
958334802
958334947

Testing UInt16, UInt32
-1913331935
-1913331935
-1913331935
-1913331935

显然,您可以尝试更改样本值以查看碰撞的位置。

KeyValuePair<ushort, uint>的结果特别令人担忧,KeyValuePair<ushort, ushort>的结果令人惊讶地好。

事实上,KeyValuePair<ushort, uint>不仅仅是坏事 - 据我所知,它是荒谬坏 - 我还没有找到任何值运行64位CLR时,没有相同的哈希码-1913331935。运行32位CLR我得到一个不同的哈希码,但所有值的哈希码仍然相同。

似乎在.NET 4.5(我正在运行的)中,GetHashCode的默认实现不只是采用结构的第一个实例字段,如前所述。我怀疑至少对于某些类型,它只使用盒装值中的标题之外的前4个字节的内存(并且这里将有每次调用的装箱),并且最终有时只是第一个字段(如果该字段是uint),有时是多个字段(例如ushort, ushort,其中两个字段都适合“内部”4个字节)和有时根本不是字段(ushort, uint)。

(实际上,这并不能解释为什么你在uint, uint案例中得到1024个不同的哈希码而不是1000个。我仍然不确定。)

最终,使用不会覆盖GetHashCode作为字典键的值类型似乎只是一个坏主意,除非您已经过测试以确保它适合您的特定要求。对IMO来说,有太多的黑魔法对它充满信心。

答案 2 :(得分:1)

正如其他回答者提到的,KeyValuePair不会覆盖GetHashCode,而GetHashCode的结构isn't the best的默认实现。您可以为此使用双元素元组,例如

var dict = new Dictionary<Tuple<uint, uint>, string>();
dict.Add(Tuple.Create(1u, 2u),"xxx"); // Tuples override GetHashCode

但是请注意,这将为额外的Tuple堆分配增加额外的开销。 (但它部分弥补了,因为当你在一个没有覆盖它的结构上调用GetHashCode时,你隐式地将它包装好了)

答案 3 :(得分:0)

如果您希望将很多自己的东西放入使用结构(如字典)中,那么底部规则总是覆盖GetHashCode。您可以使用此扩展来查看字典的填充情况。它将报告空插槽,重复键等。即将把它放在sourceforge上,但在这里;

using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Linq;
using System.Reflection;

// This unit is Freeware. It was developed by Jerremy Koot & Ivo Tops. July 2011
//
// Version  By    Changes
// =======  ===== ==============================================================
// v1.02    Ivo   Removed not-working Hashtable support and simplified code
// v1.01    Ivo   Lowered memory usage
// v1.00    I&J   First Version

namespace FastLibrary
{
/// <summary>
/// Static Extension Methods for Dictionary, ConcurrentDictionary and HashSet
/// </summary>
public static class ExtHashContainers
{
    /// <summary>
    /// Checks a dictionary for performance statistics
    /// </summary>
    public static string Statistics<TKey, TValue>(this Dictionary<TKey, TValue> source)
    {
        return ExamineData(source.Keys, source);
    }

    /// <summary>
    /// Checks a concurrent dictionary for performance statistics
    /// </summary>
    public static string Statistics<TKey, TValue>(this ConcurrentDictionary<TKey, TValue> source)
    {
        return ExamineData(source.Keys, source);
    }

    /// <summary>
    /// Checks a HashSet for performance statistics
    /// </summary>
    public static string Statistics<TKey>(this HashSet<TKey> source)
    {
        return ExamineData(source, source);
    }

    private static string ExamineData<TKey>(ICollection<TKey> source, Object hashContainer)
    {
        if (!source.Any()) return "No Data found.";

        // Find Buckets
        var b = GetBuckets(hashContainer);
        if (b < 0) return ("Unable to get Buckets Field for HashContainer");

        // Create our counting temp dictionaries
        var d = new int[b];
        var h = new Dictionary<int, int>(source.Count);

        // Find Hash Collisions and Bucket Stats
        foreach (var k in source)
        {
            var hash = k.GetHashCode() & 0x7FFFFFFF; // Hashes are stripped of sign bit in HashContainers
            int bucket = hash%b; // .NET Hashers do not use negative hashes, and use % voor bucket selection
            // Bucket Stats
            d[bucket]++;

            // Hashing Stats
            int c;
            if (h.TryGetValue(hash, out c)) h.Remove(hash);
            else c = 0;
            c++;
            h.Add(hash, c);
        }

        // Do some math
        var maxInBucket = d.Max(q => q);
        var maxSameHash = h.Values.Max(q => q);
        var emptyBuckets = d.Count(q => q == 0);
        var emptyStr = b == 0 ? "0" : ((float) (emptyBuckets)/b*100).ToString("0.0");
        var worstHash = (from i in h where i.Value == maxSameHash select i.Key).FirstOrDefault();

        // Report our findings
        var r = Environment.NewLine + hashContainer.GetType().Name + " has " + b + " buckets with " + source.Count +
                " items. " +
                Environment.NewLine + "The Largest bucket contains " + maxInBucket + " items. " +
                Environment.NewLine + "It has " + (emptyBuckets) +
                " empty buckets (" + emptyStr + "%)" + Environment.NewLine + "Each non-empty bucket has on average " +
                ((source.Count/(float) (b - emptyBuckets))).ToString("0.0") + " items." + "The " + source.Count +
                " items share " + h.Count +
                " unique hashes. ";
        if (maxSameHash > 1)
            r += Environment.NewLine + "The largest collision has " + maxSameHash +
                 " items sharing the same hash, which == " + worstHash;
        return r;
    }

    private static Int32 GetBuckets(object dictionary)
    {
        var type = dictionary.GetType();
        while (type != null && !type.IsGenericType) type = type.BaseType;
        if (type == null) return -1;

        string field = null;
        if (type.GetGenericTypeDefinition() == typeof (Dictionary<,>)) field = "buckets";
        if (type.GetGenericTypeDefinition() == typeof (ConcurrentDictionary<,>)) field = "m_buckets";
        if (type.GetGenericTypeDefinition() == typeof (HashSet<>)) field = "m_buckets";
        if (field == null) return -1;

        var bucketsField = type.GetField(field, BindingFlags.NonPublic | BindingFlags.Instance);
        if (bucketsField == null) return -1;

        var buckets = bucketsField.GetValue(dictionary);
        if (buckets == null) return -1;

        var length = buckets.GetType().GetProperty("Length");
        return (int) length.GetGetMethod().Invoke(buckets, null);
    }
}
}