如何使用NumPy计算移动平均线?

时间:2013-01-14 04:59:12

标签: python numpy scipy time-series

似乎没有简单计算numpy / scipy移动平均线的函数,导致convoluted solutions

我的问题是双重的:

  • 用numpy(正确)实现移动平均线的最简单方法是什么?
  • 由于这似乎是非常重要且容易出错,在这种情况下是否有充分理由不使用batteries included

16 个答案:

答案 0 :(得分:126)

如果您只想要一个简单的非加权移动平均线,您可以使用np.cumsum轻松实现它,可能 比基于FFT的方法更快:

编辑更正了代码中Bean发现的一个错误的索引。的修改

def moving_average(a, n=3) :
    ret = np.cumsum(a, dtype=float)
    ret[n:] = ret[n:] - ret[:-n]
    return ret[n - 1:] / n

>>> a = np.arange(20)
>>> moving_average(a)
array([  1.,   2.,   3.,   4.,   5.,   6.,   7.,   8.,   9.,  10.,  11.,
        12.,  13.,  14.,  15.,  16.,  17.,  18.])
>>> moving_average(a, n=4)
array([  1.5,   2.5,   3.5,   4.5,   5.5,   6.5,   7.5,   8.5,   9.5,
        10.5,  11.5,  12.5,  13.5,  14.5,  15.5,  16.5,  17.5])

所以我猜答案是:它实现起来非常简单,而且numpy可能已经变得有点臃肿了。

答案 1 :(得分:71)

NumPy缺乏特定的特定领域功能可能是由于核心团队的纪律和对NumPy主要指令的忠诚:提供N维数组类型,以及用于创建的功能,以及索引这些数组。像许多基本目标一样,这个目标并不小,NumPy非常出色。

(更大) SciPy 包含更大的特定于域的库集合(称为 子包 作者:SciPy devs) - 例如,数值优化(优化),信号处理(信号)和积分微积分(积分)。 / p>

我的猜测是你所追求的功能至少在一个SciPy子包中(或许是 scipy.signal );但是,我会首先看一下 SciPy scikits 的集合,找出相关的scikit(s)并在那里寻找感兴趣的功能。

Scikits是基于NumPy / SciPy独立开发的软件包,并针对特定的技术学科(例如, scikits-image scikits-learn 等。)在选择居住在相对较新的 scikits 标题之前,其中一些(特别是用于数值优化的令人敬畏的OpenOpt)是备受推崇的成熟项目。 Scikits 主页上面列出了大约30个这样的 scikits ,尽管其中至少有几个不再处于活跃开发状态。

遵循此建议会引导您进入 scikits-timeseries ;但是,这个包裹不再处于积极发展之中;实际上,Pandas已成为AFAIK,基于事实上 NumPy 的时间序列库。

Pandas 有几个可用于计算移动平均值的函数;其中最简单的可能是 rolling_mean ,您可以这样使用:

>>> # the recommended syntax to import pandas
>>> import pandas as PD
>>> import numpy as NP

>>> # prepare some fake data:
>>> # the date-time indices:
>>> t = PD.date_range('1/1/2010', '12/31/2012', freq='D')

>>> # the data:
>>> x = NP.arange(0, t.shape[0])

>>> # combine the data & index into a Pandas 'Series' object
>>> D = PD.Series(x, t)

现在,只需调用传递Series对象的函数 rolling_mean 窗口大小,在我下面的示例中 10天

>>> d_mva = PD.rolling_mean(D, 10)

>>> # d_mva is the same size as the original Series
>>> d_mva.shape
    (1096,)

>>> # though obviously the first w values are NaN where w is the window size
>>> d_mva[:3]
    2010-01-01         NaN
    2010-01-02         NaN
    2010-01-03         NaN

验证它是否有效 - 例如,比较原始系列中的值10 - 15与使用滚动平均值平滑的新系列

>>> D[10:15]
     2010-01-11    2.041076
     2010-01-12    2.041076
     2010-01-13    2.720585
     2010-01-14    2.720585
     2010-01-15    3.656987
     Freq: D

>>> d_mva[10:20]
      2010-01-11    3.131125
      2010-01-12    3.035232
      2010-01-13    2.923144
      2010-01-14    2.811055
      2010-01-15    2.785824
      Freq: D

函数rolling_mean以及大约十几个其他函数在rubric 移动窗口函数下的Pandas文档中非正式地分组; Pandas中第二个相关的函数组称为指数加权函数(例如, ewma ,它计算指数移动的加权平均值)。第二组未包含在第一组(移动窗口函数)中的事实可能是因为指数加权变换不依赖于固定长度的窗口

答案 2 :(得分:13)

一种简单的方法是使用np.convolve。 其背后的想法是利用discrete convolution的计算方式,并使用它来返回滚动平均值。这可以通过对长度等于我们想要的滑动窗口长度的np.ones序列进行卷积来完成。

为此,我们可以定义以下函数:

def moving_average(x, w):
    return np.convolve(x, np.ones(w), 'valid') / w

此函数将对序列x和长度为w的序列进行卷积。请注意,所选的modevalid,因此仅对序列完全重叠的点给出卷积。


用例

一些例子:

x = np.array([5,3,8,10,2,1,5,1,0,2])

对于窗口长度为2的移动平均值,我们将具有:

moving_average(x, 2)
# array([4. , 5.5, 9. , 6. , 1.5, 3. , 3. , 0.5, 1. ])

对于长度为4的窗口:

moving_average(x, 4)
# array([6.5 , 5.75, 5.25, 4.5 , 2.25, 1.75, 2.  ])

详细信息

让我们更深入地了解离散卷积的计算方式。 以下函数旨在复制np.convolve计算输出值的方式:

def mov_avg(x, w):
    for m in range(len(x)-(w-1)):
        yield sum(np.ones(w) * x[m:m+w]) / w 

对于上面的相同示例,这也会产生:

list(mov_avg(x, 2))
# [4.0, 5.5, 9.0, 6.0, 1.5, 3.0, 3.0, 0.5, 1.0]

因此,每个步骤要做的是取一个1与当前窗口之间的内积。在这种情况下,假设我们直接取序列的np.ones(w),那么sum的乘法是多余的。

下面是一个示例,该示例说明了如何计算第一个输出,以便使其更加清晰。假设我们想要一个w=4的窗口:

[1,1,1,1]
[5,3,8,10,2,1,5,1,0,2]
= (1*5 + 1*3 + 1*8 + 1*10) / w = 6.5

以下输出将计算为:

  [1,1,1,1]
[5,3,8,10,2,1,5,1,0,2]
= (1*3 + 1*8 + 1*10 + 1*2) / w = 5.75

依次类推,一旦执行了所有重叠操作,就返回序列的移动平均值。

答案 3 :(得分:5)

由于rolling_mean已不再是熊猫的一部分,因此该使用熊猫的答案已从上方改编

# the recommended syntax to import pandas
import pandas as pd
import numpy as np

# prepare some fake data:
# the date-time indices:
t = pd.date_range('1/1/2010', '12/31/2012', freq='D')

# the data:
x = np.arange(0, t.shape[0])

# combine the data & index into a Pandas 'Series' object
D = pd.Series(x, t)

现在,只需在数据框上使用窗口大小调用函数rolling,在我的示例中,该窗口大小为10天。

d_mva10 = D.rolling(10).mean()

# d_mva is the same size as the original Series
# though obviously the first w values are NaN where w is the window size
d_mva10[:11]

2010-01-01    NaN
2010-01-02    NaN
2010-01-03    NaN
2010-01-04    NaN
2010-01-05    NaN
2010-01-06    NaN
2010-01-07    NaN
2010-01-08    NaN
2010-01-09    NaN
2010-01-10    4.5
2010-01-11    5.5
Freq: D, dtype: float64

答案 4 :(得分:5)

这里有多种方法以及一些基准。最好的方法是使用来自其他库的优化代码的版本。 bottleneck.move_mean方法可能是最好的方法。 scipy.convolve方法也非常快速,可扩展,并且在语法和概念上都很简单,但是对于很大的窗口值来说,缩放效果不好。如果您需要纯numpy.cumsum方法,那么numpy方法是很好的。

注意:其中一些(例如bottleneck.move_mean)没有居中,会移动数据。

import numpy as np
import scipy as sci
import scipy.signal as sig
import pandas as pd
import bottleneck as bn
import time as time

def rollavg_direct(a,n): 
    'Direct "for" loop'
    assert n%2==1
    b = a*0.0
    for i in range(len(a)) :
        b[i]=a[max(i-n//2,0):min(i+n//2+1,len(a))].mean()
    return b

def rollavg_comprehension(a,n):
    'List comprehension'
    assert n%2==1
    r,N = int(n/2),len(a)
    return np.array([a[max(i-r,0):min(i+r+1,N)].mean() for i in range(N)]) 

def rollavg_convolve(a,n):
    'scipy.convolve'
    assert n%2==1
    return sci.convolve(a,np.ones(n,dtype='float')/n, 'same')[n//2:-n//2+1]  

def rollavg_convolve_edges(a,n):
    'scipy.convolve, edge handling'
    assert n%2==1
    return sci.convolve(a,np.ones(n,dtype='float'), 'same')/sci.convolve(np.ones(len(a)),np.ones(n), 'same')  

def rollavg_cumsum(a,n):
    'numpy.cumsum'
    assert n%2==1
    cumsum_vec = np.cumsum(np.insert(a, 0, 0)) 
    return (cumsum_vec[n:] - cumsum_vec[:-n]) / n

def rollavg_cumsum_edges(a,n):
    'numpy.cumsum, edge handling'
    assert n%2==1
    N = len(a)
    cumsum_vec = np.cumsum(np.insert(np.pad(a,(n-1,n-1),'constant'), 0, 0)) 
    d = np.hstack((np.arange(n//2+1,n),np.ones(N-n)*n,np.arange(n,n//2,-1)))  
    return (cumsum_vec[n+n//2:-n//2+1] - cumsum_vec[n//2:-n-n//2]) / d

def rollavg_roll(a,n):
    'Numpy array rolling'
    assert n%2==1
    N = len(a)
    rolling_idx = np.mod((N-1)*np.arange(n)[:,None] + np.arange(N), N)
    return a[rolling_idx].mean(axis=0)[n-1:] 

def rollavg_roll_edges(a,n):
    # see https://stackoverflow.com/questions/42101082/fast-numpy-roll
    'Numpy array rolling, edge handling'
    assert n%2==1
    a = np.pad(a,(0,n-1-n//2), 'constant')*np.ones(n)[:,None]
    m = a.shape[1]
    idx = np.mod((m-1)*np.arange(n)[:,None] + np.arange(m), m) # Rolling index
    out = a[np.arange(-n//2,n//2)[:,None], idx]
    d = np.hstack((np.arange(1,n),np.ones(m-2*n+1+n//2)*n,np.arange(n,n//2,-1)))
    return (out.sum(axis=0)/d)[n//2:]

def rollavg_pandas(a,n):
    'Pandas rolling average'
    return pd.DataFrame(a).rolling(5, center=True, min_periods=1).mean().to_numpy()

def rollavg_bottlneck(a,n):
    'bottleneck.move_mean'
    return bn.move_mean(a, window=n, min_count=1)

N = 10**6
a = np.random.rand(N)
functions = [rollavg_direct, rollavg_comprehension, rollavg_convolve, 
        rollavg_convolve_edges, rollavg_cumsum, rollavg_cumsum_edges, 
        rollavg_pandas, rollavg_bottlneck, rollavg_roll, rollavg_roll_edges]

print('Small window (n=3)')
%load_ext memory_profiler
for f in functions : 
    print('\n'+f.__doc__+ ' : ')
    %timeit b=f(a,3)

print('\nLarge window (n=1001)')
for f in functions[0:-2] : 
    print('\n'+f.__doc__+ ' : ')
    %timeit b=f(a,1001)

print('\nMemory\n')
print('Small window (n=3)')
N = 10**7
a = np.random.rand(N)
%load_ext memory_profiler
for f in functions[2:] : 
    print('\n'+f.__doc__+ ' : ')
    %memit b=f(a,3)

print('\nLarge window (n=1001)')
for f in functions[2:-2] : 
    print('\n'+f.__doc__+ ' : ')
    %memit b=f(a,1001)

定时,小窗口(n = 3)

Direct "for" loop : 

4.14 s ± 23.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

List comprehension : 
3.96 s ± 27.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

scipy.convolve : 
1.07 ms ± 26.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

scipy.convolve, edge handling : 
4.68 ms ± 9.69 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

numpy.cumsum : 
5.31 ms ± 5.11 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

numpy.cumsum, edge handling : 
8.52 ms ± 11.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Pandas rolling average : 
9.85 ms ± 9.63 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

bottleneck.move_mean : 
1.3 ms ± 12.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Numpy array rolling : 
31.3 ms ± 91.9 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

Numpy array rolling, edge handling : 
61.1 ms ± 55.9 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

定时,大窗口(n = 1001)

Direct "for" loop : 
4.67 s ± 34 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

List comprehension : 
4.46 s ± 14.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

scipy.convolve : 
103 ms ± 165 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

scipy.convolve, edge handling : 
272 ms ± 1.23 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

numpy.cumsum : 
5.19 ms ± 12.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

numpy.cumsum, edge handling : 
8.7 ms ± 11.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Pandas rolling average : 
9.67 ms ± 199 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

bottleneck.move_mean : 
1.31 ms ± 15.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

内存,小窗口(n = 3)

The memory_profiler extension is already loaded. To reload it, use:
  %reload_ext memory_profiler

scipy.convolve : 
peak memory: 362.66 MiB, increment: 73.61 MiB

scipy.convolve, edge handling : 
peak memory: 510.24 MiB, increment: 221.19 MiB

numpy.cumsum : 
peak memory: 441.81 MiB, increment: 152.76 MiB

numpy.cumsum, edge handling : 
peak memory: 518.14 MiB, increment: 228.84 MiB

Pandas rolling average : 
peak memory: 449.34 MiB, increment: 160.02 MiB

bottleneck.move_mean : 
peak memory: 374.17 MiB, increment: 75.54 MiB

Numpy array rolling : 
peak memory: 661.29 MiB, increment: 362.65 MiB

Numpy array rolling, edge handling : 
peak memory: 1111.25 MiB, increment: 812.61 MiB

内存,大窗口(n = 1001)

scipy.convolve : 
peak memory: 370.62 MiB, increment: 71.83 MiB

scipy.convolve, edge handling : 
peak memory: 521.98 MiB, increment: 223.18 MiB

numpy.cumsum : 
peak memory: 451.32 MiB, increment: 152.52 MiB

numpy.cumsum, edge handling : 
peak memory: 527.51 MiB, increment: 228.71 MiB

Pandas rolling average : 
peak memory: 451.25 MiB, increment: 152.50 MiB

bottleneck.move_mean : 
peak memory: 374.64 MiB, increment: 75.85 MiB

答案 5 :(得分:2)

Numpy 1.20 开始,sliding_window_view 提供了一种滑动/滚动元素窗口的方法。然后您可以单独平均的 Windows。

例如,对于一个 4 元素的窗口:

from numpy.lib.stride_tricks import sliding_window_view

# values = np.array([5, 3, 8, 10, 2, 1, 5, 1, 0, 2])
np.average(sliding_window_view(values, window_shape = 4), axis=1)
# array([6.5, 5.75, 5.25, 4.5, 2.25, 1.75, 2])

注意 sliding_window_view 的中间结果:

# values = np.array([5, 3, 8, 10, 2, 1, 5, 1, 0, 2])
sliding_window_view(values, window_shape = 4)
# array([[ 5,  3,  8, 10],
#        [ 3,  8, 10,  2],
#        [ 8, 10,  2,  1],
#        [10,  2,  1,  5],
#        [ 2,  1,  5,  1],
#        [ 1,  5,  1,  0],
#        [ 5,  1,  0,  2]])

答案 6 :(得分:1)

如果您要小心处理边缘条件(仅从边缘的可用元素计算平均值),则可以使用以下功能。

import numpy as np

def running_mean(x, N):
    out = np.zeros_like(x, dtype=np.float64)
    dim_len = x.shape[0]
    for i in range(dim_len):
        if N%2 == 0:
            a, b = i - (N-1)//2, i + (N-1)//2 + 2
        else:
            a, b = i - (N-1)//2, i + (N-1)//2 + 1

        #cap indices to min and max indices
        a = max(0, a)
        b = min(dim_len, b)
        out[i] = np.mean(x[a:b])
    return out

>>> running_mean(np.array([1,2,3,4]), 2)
array([1.5, 2.5, 3.5, 4. ])

>>> running_mean(np.array([1,2,3,4]), 3)
array([1.5, 2. , 3. , 3.5])

答案 7 :(得分:1)

我认为可以使用bottleneck

轻松解决此问题

请参见下面的基本示例:

import numpy as np
import bottleneck as bn

a = np.random.randint(4, 1000, size=(5, 7))
mm = bn.move_mean(a, window=2, min_count=1)

这给出了沿每个轴的移动平均值。

  • “ mm”是“ a”的移动平均值。

  • “窗口”是移动平均值要考虑的最大条目数。

  • “ min_count”是移动平均值(例如,第一个元素或数组具有nan值)要考虑的最小条目数。

好的部分是Bottleneck有助于处理nan值,而且效率很高。

答案 8 :(得分:1)

for i in range(len(Data)):
    Data[i, 1] = Data[i-lookback:i, 0].sum() / lookback

尝试这段代码。我认为这比较简单,可以完成工作。 回溯是移动平均线的窗口。

Data[i-lookback:i, 0].sum()中,我放置了0来引用数据集的第一列,但是如果有多个列,则可以放置任何您喜欢的列。

答案 9 :(得分:1)

移动平均线

迭代器方法

  • 将i处的数组取反,只需将i的均值取为n。

  • 使用列表推导来即时生成小型阵列。

x = np.random.randint(10, size=20)

def moving_average(arr, n):
    return [ (arr[:i+1][::-1][:n]).mean() for i, ele in enumerate(arr) ]
d = 5

moving_average(x, d)

张量卷积

moving_average = np.convolve(x, np.ones(d)/d, mode='valid')

答案 10 :(得分:0)

我实际上想要的行为与接受的答案略有不同。我正在为sklearn管道构建移动平均特征提取器,因此我要求移动平均的输出必须具有与输入相同的维度。我想要的是使移动平均线假设序列保持恒定,即,{2}与窗口2的移动平均数将得​​到[1,2,3,4,5]

对于列向量(我的用例),我们得到

[1.5,2.5,3.5,4.5,5.0]

对于数组

def moving_average_col(X, n):
  z2 = np.cumsum(np.pad(X, ((n,0),(0,0)), 'constant', constant_values=0), axis=0)
  z1 = np.cumsum(np.pad(X, ((0,n),(0,0)), 'constant', constant_values=X[-1]), axis=0)
  return (z1-z2)[(n-1):-1]/n

当然,不必假定填充的常量值,但在大多数情况下这样做就足够了。

答案 11 :(得分:0)

talib包含一个简单的移动平均工具以及其他类似的平均工具(即指数移动平均)。下面将方法与其他一些解决方案进行了比较。


%timeit pd.Series(np.arange(100000)).rolling(3).mean()
2.53 ms ± 40.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

%timeit talib.SMA(real = np.arange(100000.), timeperiod = 3)
348 µs ± 3.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

%timeit moving_average(np.arange(100000))
638 µs ± 45.1 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

一个警告是,实数必须具有dtype = float的元素。否则会引发以下错误

  

例外:实数不是两倍

答案 12 :(得分:0)

这是使用numba的快速实现(请注意类型)。请注意,它确实包含移位的nan。

import numpy as np
import numba as nb

@nb.jit(nb.float64[:](nb.float64[:],nb.int64),
        fastmath=True,nopython=True)
def moving_average( array, window ):    
    ret = np.cumsum(array)
    ret[window:] = ret[window:] - ret[:-window]
    ma = ret[window - 1:] / window
    n = np.empty(window-1); n.fill(np.nan)
    return np.concatenate((n.ravel(), ma.ravel())) 

答案 13 :(得分:0)

我使用accepted answer的解决方案,对其进行了稍微修改以使其具有与输入相同的输出长度,或者使用pandas'的版本,如在另一个答案的注释中所述。我在这里总结了两个示例,以供将来参考:

import numpy as np
import pandas as pd

def moving_average(a, n):
    ret = np.cumsum(a, dtype=float)
    ret[n:] = ret[n:] - ret[:-n]
    return ret / n

def moving_average_centered(a, n):
    return pd.Series(a).rolling(window=n, center=True).mean().to_numpy()

A = [0, 0, 1, 2, 4, 5, 4]
print(moving_average(A, 3))    
# [0.         0.         0.33333333 1.         2.33333333 3.66666667 4.33333333]
print(moving_average_centered(A, 3))
# [nan        0.33333333 1.         2.33333333 3.66666667 4.33333333 nan       ]

答案 14 :(得分:0)

通过将以下解决方案与使用numpy cumsum的解决方案进行比较,该解决方案几乎花费了一半的时间。这是因为它不需要遍历整个数组来求和,然后进行所有减法。此外,如果数组很大且数量很大(可能的溢出),则总和可能是“ 危险”。当然,这里也存在危险,但至少仅将基本数字加在一起。

def moving_average(array_numbers, n):
    if n > len(array_numbers):
      return []
    temp_sum = sum(array_numbers[:n])
    averages = [temp_sum / float(n)]
    for first_index, item in enumerate(array_numbers[n:]):
        temp_sum += item - array_numbers[first_index]
        averages.append(temp_sum / float(n))
    return averages

答案 15 :(得分:0)

所有答案似乎都集中在预先计算列表的情况上。对于实际运行的用例,数字一个一个进来,这里有一个简单的类,提供对最后 N 个值求平均值的服务:

import numpy as np
class RunningAverage():
    def __init__(self, stack_size):
        self.stack = [0 for _ in range(stack_size)]
        self.ptr = 0
        self.full_cycle = False
    def add(self,value):
        self.stack[self.ptr] = value
        self.ptr += 1
        if self.ptr == len(self.stack):
            self.full_cycle = True
            self.ptr = 0
    def get_avg(self):
        if self.full_cycle:
            return np.mean(self.stack)
        else:
            return np.mean(self.stack[:self.ptr])

用法:

N = 50  # size of the averaging window
run_avg = RunningAverage(N)
for i in range(1000):
    value = <my computation>
    run_avg.add(value)
    if i % 20 ==0: # print once in 20 iters:
        print(f'the average value is {run_avg.get_avg()}')