如何实现std :: function?

时间:2013-08-26 21:16:14

标签: c++ c++11 lambda

根据我发现的来源, lambda表达式基本上是由编译器创建一个带有重载函数调用操作符的类和引用的变量作为成员来实现的。这表明lambda表达式的大小各不相同,并且给定了足够的引用变量,其大小可以任意大

std::function应该有固定大小,但它必须能够包装任何类型的callables,包括任何类型的lambda。它是如何实现的?如果std::function在内部使用指向其目标的指针,那么当复制或移动std::function实例时会发生什么?是否涉及堆分配?

5 个答案:

答案 0 :(得分:63)

std::function的实现可能因实现而异,但核心思想是它使用类型擦除。虽然有多种方法可以实现,但您可以想象一个简单(非最佳)的解决方案可能是这样的(为了简单起见,针对std::function<int (double)>的特定情况进行了简化):

struct callable_base {
   virtual int operator()(double d) = 0;
   virtual ~callable_base() {}
};
template <typename F>
struct callable : callable_base {
   F functor;
   callable(F functor) : functor(functor) {}
   virtual int operator()(double d) { return functor(d); }
};
class function_int_double {
   std::unique_ptr<callable_base> c;
public:
   template <typename F>
   function(F f) {
      c.reset(new callable<F>(f));
   }
   int operator()(double d) { return c(d); }
// ...
};

在这种简单的方法中,function对象只存储unique_ptr到基类型。对于与function一起使用的每个不同的函子,创建从基础派生的新类型,并动态实例化该类型的对象。 std::function对象总是具有相同的大小,并根据需要为堆中的不同仿函数分配空间。

在现实生活中,有不同的优化可以提供性能优势,但会使答案复杂化。类型可以使用小对象优化,动态分派可以用自由函数指针代替,该指针将函子作为参数来避免一个间接层......但是这个想法基本相同。


关于std::function的副本如何表现的问题,快速测试表明内部可调用对象的副本已完成,而不是共享状态。

// g++4.8
int main() {
   int value = 5;
   typedef std::function<void()> fun;
   fun f1 = [=]() mutable { std::cout << value++ << '\n' };
   fun f2 = f1;
   f1();                    // prints 5
   fun f3 = f1;
   f2();                    // prints 5
   f3();                    // prints 6 (copy after first increment)
}

测试表明f2获取可调用实体的副本,而不是引用。如果可调用实体由不同的std::function<>对象共享,则程序的输出将为5,6,7。

答案 1 :(得分:19)

对于某些类型的参数(“如果f的目标是通过reference_wrapper传递的可调用对象或函数指针”),std::function的构造函数不允许任何异常,因此使用动态内存不在这个问题。对于这种情况,所有数据必须直接存储在std::function对象中。

在一般情况下,(包括lambda情况),允许使用动态内存(通过标准分配器或传递给std::function构造函数的分配器),因为实现认为合适。如果可以避免,标准建议实现不使用动态内存,但正如你正确地说,如果函数对象(不是std::function对象,而是包含在其中的对象)足够大,则没有防止它的方法,因为std::function具有固定的大小。

抛出异常的权限被授予普通构造函数和复制构造函数,它们在复制期间也明确允许动态内存分配。对于移动,没有理由需要动态内存。标准似乎没有明确地禁止它,如果移动可能会调用包装对象类型的移动构造函数,则可能不能,但是你应该能够假设如果实现和你的对象都是合理的,移动不会导致任何分配。

答案 2 :(得分:15)

来自@DavidRodríguez的答案 - dribeas有助于演示类型擦除但不够好,因为类型擦除还包括如何复制类型(在该答案中,函数对象将不是可复制构造的)。除了函子数据之外,这些行为也存储在function对象中。

在Ubuntu 14.04 gcc 4.8的STL实现中使用的技巧是编写一个泛型函数,使用每种可能的函子类型对其进行特化,并将它们转换为通用函数指针类型。因此,类型信息已删除

我已经拼凑了一个简化版本。希望它能帮助

#include <iostream>
#include <memory>

template <typename T>
class function;

template <typename R, typename... Args>
class function<R(Args...)>
{
    // function pointer types for the type-erasure behaviors
    // all these char* parameters are actually casted from some functor type
    typedef R (*invoke_fn_t)(char*, Args&&...);
    typedef void (*construct_fn_t)(char*, char*);
    typedef void (*destroy_fn_t)(char*);

    // type-aware generic functions for invoking
    // the specialization of these functions won't be capable with
    //   the above function pointer types, so we need some cast
    template <typename Functor>
    static R invoke_fn(Functor* fn, Args&&... args)
    {
        return (*fn)(std::forward<Args>(args)...);
    }

    template <typename Functor>
    static void construct_fn(Functor* construct_dst, Functor* construct_src)
    {
        // the functor type must be copy-constructible
        new (construct_dst) Functor(*construct_src);
    }

    template <typename Functor>
    static void destroy_fn(Functor* f)
    {
        f->~Functor();
    }

    // these pointers are storing behaviors
    invoke_fn_t invoke_f;
    construct_fn_t construct_f;
    destroy_fn_t destroy_f;

    // erase the type of any functor and store it into a char*
    // so the storage size should be obtained as well
    std::unique_ptr<char[]> data_ptr;
    size_t data_size;
public:
    function()
        : invoke_f(nullptr)
        , construct_f(nullptr)
        , destroy_f(nullptr)
        , data_ptr(nullptr)
        , data_size(0)
    {}

    // construct from any functor type
    template <typename Functor>
    function(Functor f)
        // specialize functions and erase their type info by casting
        : invoke_f(reinterpret_cast<invoke_fn_t>(invoke_fn<Functor>))
        , construct_f(reinterpret_cast<construct_fn_t>(construct_fn<Functor>))
        , destroy_f(reinterpret_cast<destroy_fn_t>(destroy_fn<Functor>))
        , data_ptr(new char[sizeof(Functor)])
        , data_size(sizeof(Functor))
    {
        // copy the functor to internal storage
        this->construct_f(this->data_ptr.get(), reinterpret_cast<char*>(&f));
    }

    // copy constructor
    function(function const& rhs)
        : invoke_f(rhs.invoke_f)
        , construct_f(rhs.construct_f)
        , destroy_f(rhs.destroy_f)
        , data_size(rhs.data_size)
    {
        if (this->invoke_f) {
            // when the source is not a null function, copy its internal functor
            this->data_ptr.reset(new char[this->data_size]);
            this->construct_f(this->data_ptr.get(), rhs.data_ptr.get());
        }
    }

    ~function()
    {
        if (data_ptr != nullptr) {
            this->destroy_f(this->data_ptr.get());
        }
    }

    // other constructors, from nullptr, from function pointers

    R operator()(Args&&... args)
    {
        return this->invoke_f(this->data_ptr.get(), std::forward<Args>(args)...);
    }
};

// examples
int main()
{
    int i = 0;
    auto fn = [i](std::string const& s) mutable
    {
        std::cout << ++i << ". " << s << std::endl;
    };
    fn("first");                                   // 1. first
    fn("second");                                  // 2. second

    // construct from lambda
    ::function<void(std::string const&)> f(fn);
    f("third");                                    // 3. third

    // copy from another function
    ::function<void(std::string const&)> g(f);
    f("forth - f");                                // 4. forth - f
    g("forth - g");                                // 4. forth - g

    // capture and copy non-trivial types like std::string
    std::string x("xxxx");
    ::function<void()> h([x]() { std::cout << x << std::endl; });
    h();

    ::function<void()> k(h);
    k();
    return 0;
}

STL版本中还有一些优化

  • construct_fdestroy_f混合成一个函数指针(带有一个附加参数,告诉该怎么做)以保存一些字节
  • 原始指针用于存储仿函数对象,以及union中的函数指针,这样当从函数指针构造function对象时,它将直接存储在union而不是堆空间

也许STL实现不是最好的解决方案,因为我听说过一些faster implementation。但是我相信潜在的机制是一样的。

答案 3 :(得分:0)

@neuront给出了确切的答案,技巧需要使用新技术等,GNU std :: function的代码

// Implementation of std::function -*- C++ -*-

// Copyright (C) 2004-2018 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file include/bits/std_function.h
 *  This is an internal header file, included by other library headers.
 *  Do not attempt to use it directly. @headername{functional}
 */

#ifndef _GLIBCXX_STD_FUNCTION_H
#define _GLIBCXX_STD_FUNCTION_H 1

#pragma GCC system_header

#if __cplusplus < 201103L
# include <bits/c++0x_warning.h>
#else

#if __cpp_rtti
# include <typeinfo>
#endif
#include <bits/stl_function.h>
#include <bits/invoke.h>
#include <bits/refwrap.h>
#include <bits/functexcept.h>

namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

  /**
   *  @brief Exception class thrown when class template function's
   *  operator() is called with an empty target.
   *  @ingroup exceptions
   */
  class bad_function_call : public std::exception
  {
  public:
    virtual ~bad_function_call() noexcept;

    const char* what() const noexcept;
  };

  /**
   *  Trait identifying "location-invariant" types, meaning that the
   *  address of the object (or any of its members) will not escape.
   *  Trivially copyable types are location-invariant and users can
   *  specialize this trait for other types.
   */
  template<typename _Tp>
    struct __is_location_invariant
    : is_trivially_copyable<_Tp>::type
    { };

  class _Undefined_class;

  union _Nocopy_types
  {
    void*       _M_object;
    const void* _M_const_object;
    void (*_M_function_pointer)();
    void (_Undefined_class::*_M_member_pointer)();
  };

  union [[gnu::may_alias]] _Any_data
  {
    void*       _M_access()       { return &_M_pod_data[0]; }
    const void* _M_access() const { return &_M_pod_data[0]; }

    template<typename _Tp>
      _Tp&
      _M_access()
      { return *static_cast<_Tp*>(_M_access()); }

    template<typename _Tp>
      const _Tp&
      _M_access() const
      { return *static_cast<const _Tp*>(_M_access()); }

    _Nocopy_types _M_unused;
    char _M_pod_data[sizeof(_Nocopy_types)];
  };

  enum _Manager_operation
  {
    __get_type_info,
    __get_functor_ptr,
    __clone_functor,
    __destroy_functor
  };

  // Simple type wrapper that helps avoid annoying const problems
  // when casting between void pointers and pointers-to-pointers.
  template<typename _Tp>
    struct _Simple_type_wrapper
    {
      _Simple_type_wrapper(_Tp __value) : __value(__value) { }

      _Tp __value;
    };

  template<typename _Tp>
    struct __is_location_invariant<_Simple_type_wrapper<_Tp> >
    : __is_location_invariant<_Tp>
    { };

  template<typename _Signature>
    class function;

  /// Base class of all polymorphic function object wrappers.
  class _Function_base
  {
  public:
    static const std::size_t _M_max_size = sizeof(_Nocopy_types);
    static const std::size_t _M_max_align = __alignof__(_Nocopy_types);

    template<typename _Functor>
      class _Base_manager
      {
      protected:
    static const bool __stored_locally =
    (__is_location_invariant<_Functor>::value
     && sizeof(_Functor) <= _M_max_size
     && __alignof__(_Functor) <= _M_max_align
     && (_M_max_align % __alignof__(_Functor) == 0));

    typedef integral_constant<bool, __stored_locally> _Local_storage;

    // Retrieve a pointer to the function object
    static _Functor*
    _M_get_pointer(const _Any_data& __source)
    {
      const _Functor* __ptr =
        __stored_locally? std::__addressof(__source._M_access<_Functor>())
        /* have stored a pointer */ : __source._M_access<_Functor*>();
      return const_cast<_Functor*>(__ptr);
    }

    // Clone a location-invariant function object that fits within
    // an _Any_data structure.
    static void
    _M_clone(_Any_data& __dest, const _Any_data& __source, true_type)
    {
      ::new (__dest._M_access()) _Functor(__source._M_access<_Functor>());
    }

    // Clone a function object that is not location-invariant or
    // that cannot fit into an _Any_data structure.
    static void
    _M_clone(_Any_data& __dest, const _Any_data& __source, false_type)
    {
      __dest._M_access<_Functor*>() =
        new _Functor(*__source._M_access<_Functor*>());
    }

    // Destroying a location-invariant object may still require
    // destruction.
    static void
    _M_destroy(_Any_data& __victim, true_type)
    {
      __victim._M_access<_Functor>().~_Functor();
    }

    // Destroying an object located on the heap.
    static void
    _M_destroy(_Any_data& __victim, false_type)
    {
      delete __victim._M_access<_Functor*>();
    }

      public:
    static bool
    _M_manager(_Any_data& __dest, const _Any_data& __source,
           _Manager_operation __op)
    {
      switch (__op)
        {
#if __cpp_rtti
        case __get_type_info:
          __dest._M_access<const type_info*>() = &typeid(_Functor);
          break;
#endif
        case __get_functor_ptr:
          __dest._M_access<_Functor*>() = _M_get_pointer(__source);
          break;

        case __clone_functor:
          _M_clone(__dest, __source, _Local_storage());
          break;

        case __destroy_functor:
          _M_destroy(__dest, _Local_storage());
          break;
        }
      return false;
    }

    static void
    _M_init_functor(_Any_data& __functor, _Functor&& __f)
    { _M_init_functor(__functor, std::move(__f), _Local_storage()); }

    template<typename _Signature>
      static bool
      _M_not_empty_function(const function<_Signature>& __f)
      { return static_cast<bool>(__f); }

    template<typename _Tp>
      static bool
      _M_not_empty_function(_Tp* __fp)
      { return __fp != nullptr; }

    template<typename _Class, typename _Tp>
      static bool
      _M_not_empty_function(_Tp _Class::* __mp)
      { return __mp != nullptr; }

    template<typename _Tp>
      static bool
      _M_not_empty_function(const _Tp&)
      { return true; }

      private:
    static void
    _M_init_functor(_Any_data& __functor, _Functor&& __f, true_type)
    { ::new (__functor._M_access()) _Functor(std::move(__f)); }

    static void
    _M_init_functor(_Any_data& __functor, _Functor&& __f, false_type)
    { __functor._M_access<_Functor*>() = new _Functor(std::move(__f)); }
      };

    _Function_base() : _M_manager(nullptr) { }

    ~_Function_base()
    {
      if (_M_manager)
    _M_manager(_M_functor, _M_functor, __destroy_functor);
    }

    bool _M_empty() const { return !_M_manager; }

    typedef bool (*_Manager_type)(_Any_data&, const _Any_data&,
                  _Manager_operation);

    _Any_data     _M_functor;
    _Manager_type _M_manager;
  };

  template<typename _Signature, typename _Functor>
    class _Function_handler;

  template<typename _Res, typename _Functor, typename... _ArgTypes>
    class _Function_handler<_Res(_ArgTypes...), _Functor>
    : public _Function_base::_Base_manager<_Functor>
    {
      typedef _Function_base::_Base_manager<_Functor> _Base;

    public:
      static _Res
      _M_invoke(const _Any_data& __functor, _ArgTypes&&... __args)
      {
    return (*_Base::_M_get_pointer(__functor))(
        std::forward<_ArgTypes>(__args)...);
      }
    };

  template<typename _Functor, typename... _ArgTypes>
    class _Function_handler<void(_ArgTypes...), _Functor>
    : public _Function_base::_Base_manager<_Functor>
    {
      typedef _Function_base::_Base_manager<_Functor> _Base;

     public:
      static void
      _M_invoke(const _Any_data& __functor, _ArgTypes&&... __args)
      {
    (*_Base::_M_get_pointer(__functor))(
        std::forward<_ArgTypes>(__args)...);
      }
    };

  template<typename _Class, typename _Member, typename _Res,
       typename... _ArgTypes>
    class _Function_handler<_Res(_ArgTypes...), _Member _Class::*>
    : public _Function_handler<void(_ArgTypes...), _Member _Class::*>
    {
      typedef _Function_handler<void(_ArgTypes...), _Member _Class::*>
    _Base;

     public:
      static _Res
      _M_invoke(const _Any_data& __functor, _ArgTypes&&... __args)
      {
    return std::__invoke(_Base::_M_get_pointer(__functor)->__value,
                 std::forward<_ArgTypes>(__args)...);
      }
    };

  template<typename _Class, typename _Member, typename... _ArgTypes>
    class _Function_handler<void(_ArgTypes...), _Member _Class::*>
    : public _Function_base::_Base_manager<
         _Simple_type_wrapper< _Member _Class::* > >
    {
      typedef _Member _Class::* _Functor;
      typedef _Simple_type_wrapper<_Functor> _Wrapper;
      typedef _Function_base::_Base_manager<_Wrapper> _Base;

    public:
      static bool
      _M_manager(_Any_data& __dest, const _Any_data& __source,
         _Manager_operation __op)
      {
    switch (__op)
      {
#if __cpp_rtti
      case __get_type_info:
        __dest._M_access<const type_info*>() = &typeid(_Functor);
        break;
#endif
      case __get_functor_ptr:
        __dest._M_access<_Functor*>() =
          &_Base::_M_get_pointer(__source)->__value;
        break;

      default:
        _Base::_M_manager(__dest, __source, __op);
      }
    return false;
      }

      static void
      _M_invoke(const _Any_data& __functor, _ArgTypes&&... __args)
      {
    std::__invoke(_Base::_M_get_pointer(__functor)->__value,
              std::forward<_ArgTypes>(__args)...);
      }
    };

  template<typename _From, typename _To>
    using __check_func_return_type
      = __or_<is_void<_To>, is_same<_From, _To>, is_convertible<_From, _To>>;

  /**
   *  @brief Primary class template for std::function.
   *  @ingroup functors
   *
   *  Polymorphic function wrapper.
   */
  template<typename _Res, typename... _ArgTypes>
    class function<_Res(_ArgTypes...)>
    : public _Maybe_unary_or_binary_function<_Res, _ArgTypes...>,
      private _Function_base
    {
      template<typename _Func,
           typename _Res2 = typename result_of<_Func&(_ArgTypes...)>::type>
    struct _Callable : __check_func_return_type<_Res2, _Res> { };

      // Used so the return type convertibility checks aren't done when
      // performing overload resolution for copy construction/assignment.
      template<typename _Tp>
    struct _Callable<function, _Tp> : false_type { };

      template<typename _Cond, typename _Tp>
    using _Requires = typename enable_if<_Cond::value, _Tp>::type;

    public:
      typedef _Res result_type;

      // [3.7.2.1] construct/copy/destroy

      /**
       *  @brief Default construct creates an empty function call wrapper.
       *  @post @c !(bool)*this
       */
      function() noexcept
      : _Function_base() { }

      /**
       *  @brief Creates an empty function call wrapper.
       *  @post @c !(bool)*this
       */
      function(nullptr_t) noexcept
      : _Function_base() { }

      /**
       *  @brief %Function copy constructor.
       *  @param __x A %function object with identical call signature.
       *  @post @c bool(*this) == bool(__x)
       *
       *  The newly-created %function contains a copy of the target of @a
       *  __x (if it has one).
       */
      function(const function& __x);

      /**
       *  @brief %Function move constructor.
       *  @param __x A %function object rvalue with identical call signature.
       *
       *  The newly-created %function contains the target of @a __x
       *  (if it has one).
       */
      function(function&& __x) noexcept : _Function_base()
      {
    __x.swap(*this);
      }

      /**
       *  @brief Builds a %function that targets a copy of the incoming
       *  function object.
       *  @param __f A %function object that is callable with parameters of
       *  type @c T1, @c T2, ..., @c TN and returns a value convertible
       *  to @c Res.
       *
       *  The newly-created %function object will target a copy of
       *  @a __f. If @a __f is @c reference_wrapper<F>, then this function
       *  object will contain a reference to the function object @c
       *  __f.get(). If @a __f is a NULL function pointer or NULL
       *  pointer-to-member, the newly-created object will be empty.
       *
       *  If @a __f is a non-NULL function pointer or an object of type @c
       *  reference_wrapper<F>, this function will not throw.
       */
      template<typename _Functor,
           typename = _Requires<__not_<is_same<_Functor, function>>, void>,
           typename = _Requires<_Callable<_Functor>, void>>
    function(_Functor);

      /**
       *  @brief %Function assignment operator.
       *  @param __x A %function with identical call signature.
       *  @post @c (bool)*this == (bool)x
       *  @returns @c *this
       *
       *  The target of @a __x is copied to @c *this. If @a __x has no
       *  target, then @c *this will be empty.
       *
       *  If @a __x targets a function pointer or a reference to a function
       *  object, then this operation will not throw an %exception.
       */
      function&
      operator=(const function& __x)
      {
    function(__x).swap(*this);
    return *this;
      }

      /**
       *  @brief %Function move-assignment operator.
       *  @param __x A %function rvalue with identical call signature.
       *  @returns @c *this
       *
       *  The target of @a __x is moved to @c *this. If @a __x has no
       *  target, then @c *this will be empty.
       *
       *  If @a __x targets a function pointer or a reference to a function
       *  object, then this operation will not throw an %exception.
       */
      function&
      operator=(function&& __x) noexcept
      {
    function(std::move(__x)).swap(*this);
    return *this;
      }

      /**
       *  @brief %Function assignment to zero.
       *  @post @c !(bool)*this
       *  @returns @c *this
       *
       *  The target of @c *this is deallocated, leaving it empty.
       */
      function&
      operator=(nullptr_t) noexcept
      {
    if (_M_manager)
      {
        _M_manager(_M_functor, _M_functor, __destroy_functor);
        _M_manager = nullptr;
        _M_invoker = nullptr;
      }
    return *this;
      }

      /**
       *  @brief %Function assignment to a new target.
       *  @param __f A %function object that is callable with parameters of
       *  type @c T1, @c T2, ..., @c TN and returns a value convertible
       *  to @c Res.
       *  @return @c *this
       *
       *  This  %function object wrapper will target a copy of @a
       *  __f. If @a __f is @c reference_wrapper<F>, then this function
       *  object will contain a reference to the function object @c
       *  __f.get(). If @a __f is a NULL function pointer or NULL
       *  pointer-to-member, @c this object will be empty.
       *
       *  If @a __f is a non-NULL function pointer or an object of type @c
       *  reference_wrapper<F>, this function will not throw.
       */
      template<typename _Functor>
    _Requires<_Callable<typename decay<_Functor>::type>, function&>
    operator=(_Functor&& __f)
    {
      function(std::forward<_Functor>(__f)).swap(*this);
      return *this;
    }

      /// @overload
      template<typename _Functor>
    function&
    operator=(reference_wrapper<_Functor> __f) noexcept
    {
      function(__f).swap(*this);
      return *this;
    }

      // [3.7.2.2] function modifiers

      /**
       *  @brief Swap the targets of two %function objects.
       *  @param __x A %function with identical call signature.
       *
       *  Swap the targets of @c this function object and @a __f. This
       *  function will not throw an %exception.
       */
      void swap(function& __x) noexcept
      {
    std::swap(_M_functor, __x._M_functor);
    std::swap(_M_manager, __x._M_manager);
    std::swap(_M_invoker, __x._M_invoker);
      }

      // [3.7.2.3] function capacity

      /**
       *  @brief Determine if the %function wrapper has a target.
       *
       *  @return @c true when this %function object contains a target,
       *  or @c false when it is empty.
       *
       *  This function will not throw an %exception.
       */
      explicit operator bool() const noexcept
      { return !_M_empty(); }

      // [3.7.2.4] function invocation

      /**
       *  @brief Invokes the function targeted by @c *this.
       *  @returns the result of the target.
       *  @throws bad_function_call when @c !(bool)*this
       *
       *  The function call operator invokes the target function object
       *  stored by @c this.
       */
      _Res operator()(_ArgTypes... __args) const;

#if __cpp_rtti
      // [3.7.2.5] function target access
      /**
       *  @brief Determine the type of the target of this function object
       *  wrapper.
       *
       *  @returns the type identifier of the target function object, or
       *  @c typeid(void) if @c !(bool)*this.
       *
       *  This function will not throw an %exception.
       */
      const type_info& target_type() const noexcept;

      /**
       *  @brief Access the stored target function object.
       *
       *  @return Returns a pointer to the stored target function object,
       *  if @c typeid(_Functor).equals(target_type()); otherwise, a NULL
       *  pointer.
       *
       * This function does not throw exceptions.
       *
       * @{
       */
      template<typename _Functor>       _Functor* target() noexcept;

      template<typename _Functor> const _Functor* target() const noexcept;
      // @}
#endif

    private:
      using _Invoker_type = _Res (*)(const _Any_data&, _ArgTypes&&...);
      _Invoker_type _M_invoker;
  };

#if __cpp_deduction_guides >= 201606
  template<typename>
    struct __function_guide_helper
    { };

  template<typename _Res, typename _Tp, bool _Nx, typename... _Args>
    struct __function_guide_helper<
      _Res (_Tp::*) (_Args...) noexcept(_Nx)
    >
    { using type = _Res(_Args...); };

  template<typename _Res, typename _Tp, bool _Nx, typename... _Args>
    struct __function_guide_helper<
      _Res (_Tp::*) (_Args...) & noexcept(_Nx)
    >
    { using type = _Res(_Args...); };

  template<typename _Res, typename _Tp, bool _Nx, typename... _Args>
    struct __function_guide_helper<
      _Res (_Tp::*) (_Args...) const noexcept(_Nx)
    >
    { using type = _Res(_Args...); };

  template<typename _Res, typename _Tp, bool _Nx, typename... _Args>
    struct __function_guide_helper<
      _Res (_Tp::*) (_Args...) const & noexcept(_Nx)
    >
    { using type = _Res(_Args...); };

  template<typename _Res, typename... _ArgTypes>
    function(_Res(*)(_ArgTypes...)) -> function<_Res(_ArgTypes...)>;

  template<typename _Functor, typename _Signature = typename
       __function_guide_helper<decltype(&_Functor::operator())>::type>
    function(_Functor) -> function<_Signature>;
#endif

  // Out-of-line member definitions.
  template<typename _Res, typename... _ArgTypes>
    function<_Res(_ArgTypes...)>::
    function(const function& __x)
    : _Function_base()
    {
      if (static_cast<bool>(__x))
    {
      __x._M_manager(_M_functor, __x._M_functor, __clone_functor);
      _M_invoker = __x._M_invoker;
      _M_manager = __x._M_manager;
    }
    }

  template<typename _Res, typename... _ArgTypes>
    template<typename _Functor, typename, typename>
      function<_Res(_ArgTypes...)>::
      function(_Functor __f)
      : _Function_base()
      {
    typedef _Function_handler<_Res(_ArgTypes...), _Functor> _My_handler;

    if (_My_handler::_M_not_empty_function(__f))
      {
        _My_handler::_M_init_functor(_M_functor, std::move(__f));
        _M_invoker = &_My_handler::_M_invoke;
        _M_manager = &_My_handler::_M_manager;
      }
      }

  template<typename _Res, typename... _ArgTypes>
    _Res
    function<_Res(_ArgTypes...)>::
    operator()(_ArgTypes... __args) const
    {
      if (_M_empty())
    __throw_bad_function_call();
      return _M_invoker(_M_functor, std::forward<_ArgTypes>(__args)...);
    }

#if __cpp_rtti
  template<typename _Res, typename... _ArgTypes>
    const type_info&
    function<_Res(_ArgTypes...)>::
    target_type() const noexcept
    {
      if (_M_manager)
    {
      _Any_data __typeinfo_result;
      _M_manager(__typeinfo_result, _M_functor, __get_type_info);
      return *__typeinfo_result._M_access<const type_info*>();
    }
      else
    return typeid(void);
    }

  template<typename _Res, typename... _ArgTypes>
    template<typename _Functor>
      _Functor*
      function<_Res(_ArgTypes...)>::
      target() noexcept
      {
    const function* __const_this = this;
    const _Functor* __func = __const_this->template target<_Functor>();
    return const_cast<_Functor*>(__func);
      }

  template<typename _Res, typename... _ArgTypes>
    template<typename _Functor>
      const _Functor*
      function<_Res(_ArgTypes...)>::
      target() const noexcept
      {
    if (typeid(_Functor) == target_type() && _M_manager)
      {
        _Any_data __ptr;
        _M_manager(__ptr, _M_functor, __get_functor_ptr);
        return __ptr._M_access<const _Functor*>();
      }
    else
      return nullptr;
      }
#endif

  // [20.7.15.2.6] null pointer comparisons

  /**
   *  @brief Compares a polymorphic function object wrapper against 0
   *  (the NULL pointer).
   *  @returns @c true if the wrapper has no target, @c false otherwise
   *
   *  This function will not throw an %exception.
   */
  template<typename _Res, typename... _Args>
    inline bool
    operator==(const function<_Res(_Args...)>& __f, nullptr_t) noexcept
    { return !static_cast<bool>(__f); }

  /// @overload
  template<typename _Res, typename... _Args>
    inline bool
    operator==(nullptr_t, const function<_Res(_Args...)>& __f) noexcept
    { return !static_cast<bool>(__f); }

  /**
   *  @brief Compares a polymorphic function object wrapper against 0
   *  (the NULL pointer).
   *  @returns @c false if the wrapper has no target, @c true otherwise
   *
   *  This function will not throw an %exception.
   */
  template<typename _Res, typename... _Args>
    inline bool
    operator!=(const function<_Res(_Args...)>& __f, nullptr_t) noexcept
    { return static_cast<bool>(__f); }

  /// @overload
  template<typename _Res, typename... _Args>
    inline bool
    operator!=(nullptr_t, const function<_Res(_Args...)>& __f) noexcept
    { return static_cast<bool>(__f); }


  // [20.7.15.2.7] specialized algorithms

  /**
   *  @brief Swap the targets of two polymorphic function object wrappers.
   *
   *  This function will not throw an %exception.
   */
  // _GLIBCXX_RESOLVE_LIB_DEFECTS
  // 2062. Effect contradictions w/o no-throw guarantee of std::function swaps
  template<typename _Res, typename... _Args>
    inline void
    swap(function<_Res(_Args...)>& __x, function<_Res(_Args...)>& __y) noexcept
    { __x.swap(__y); }

_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std

#endif // C++11

#endif // _GLIBCXX_STD_FUNCTION_H

答案 4 :(得分:-6)

std::function重载operator()使其成为一个仿函数对象,lambda的工作方式相同。它基本上创建了一个带有成员变量的结构,可以在operator()函数中访问它。所以要记住的基本概念是lambda是一个对象(称为仿函数或函数对象)而不是函数。该标准表示,如果可以避免使用动态内存,