使用地理位置api cordova / phonegap查找距离,速度和加速度

时间:2014-04-11 13:13:03

标签: android ios cordova geolocation accelerometer

我想开发一个使用cordova / phonegap的移动应用程序,它会找到行进的距离,平均而言。特定固定时间范围的速度和加速度表示20秒。由用户提供。

我已经读过可以在那里使用phonegap的地理定位或加速度计api,但我很困惑,无法理解使用哪个公式或方法以及如何计算这些值?

请帮助我实现此功能。

1 个答案:

答案 0 :(得分:5)

this page底部的Javascript库对于使用lat / lon坐标非常有用。它允许您轻松计算点之间的距离,从而计算速度,加速度等。

然后,使用Phonegap地理位置API,您可以执行以下操作:

var currentUpdate, lastUpdate;

function onPositionUpdate(position){
    if(currentUpdate) lastUpdate = currentUpdate;

    currentUpdate = {
        position: new LatLon(position.coords.latitude, position.coords.longitude),
        time: new Date()
    };

    if(!lastUpdate) return;

    currentUpdate.deltaDistMetres = lastUpdate.position.distanceTo(currentUpdate.position)*1000;
    currentUpdate.deltaTimeSecs = (currentUpdate.time - lastUpdate.time)*1000;
    currentUpdate.speed = (currentUpdate.deltaDistMetres/currentUpdate.deltaTimeSecs);
    currentUpdate.accelerationGPS = (currentUpdate.speed - lastUpdate.speed) / currentUpdate.deltaTimeSecs;

    console.log("Distance moved: "+currentUpdate.deltaDistMetres+" m; Avg speed: "+currentUpdate.speed+" m/s; Acceleration: "+currentUpdate.accelerationGPS + "m/s/s");

}

function onPositionError(error){
    console.log("Error: "+error.message);
}

$(document).on("deviceready", function() {
    navigator.geolocation.watchPosition(onPositionUpdate, onPositionError, {timeout: 30000, enableHighAccuracy: true});    
});



/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  */
/*  Latitude/longitude spherical geodesy formulae & scripts (c) Chris Veness 2002-2012            */
/*   - www.movable-type.co.uk/scripts/latlong.html                                                */
/*                                                                                                */
/*  Sample usage:                                                                                 */
/*    var p1 = new LatLon(51.5136, -0.0983);                                                      */
/*    var p2 = new LatLon(51.4778, -0.0015);                                                      */
/*    var dist = p1.distanceTo(p2);          // in km                                             */
/*    var brng = p1.bearingTo(p2);           // in degrees clockwise from north                   */
/*    ... etc                                                                                     */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  */

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  */
/*  Note that minimal error checking is performed in this example code!                           */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  */


/**
 * Object LatLon: tools for geodetic calculations
 *
 * @requires Geo
 */


/**
 * Creates a point on the earth's surface at the supplied latitude / longitude
 *
 * @constructor
 * @param {Number} lat: latitude in degrees
 * @param {Number} lon: longitude in degrees
 * @param {Number} [radius=6371]: radius of earth if different value is required from standard 6,371km
 */
function LatLon(lat, lon, radius) {
    if (typeof(radius) == 'undefined') radius = 6371;  // earth's mean radius in km

    this.lat    = Number(lat);
    this.lon    = Number(lon);
    this.radius = Number(radius);
}


/**
 * Returns the distance from this point to the supplied point, in km 
 * (using Haversine formula)
 *
 * from: Haversine formula - R. W. Sinnott, "Virtues of the Haversine",
 *       Sky and Telescope, vol 68, no 2, 1984
 *
 * @this    {LatLon} latitude/longitude of origin point
 * @param   {LatLon} point: latitude/longitude of destination point
 * @param   {Number} [precision=4]: number of significant digits to use for returned value
 * @returns {Number} distance in km between this point and destination point
 */
LatLon.prototype.distanceTo = function(point, precision) {
    // default 4 sig figs reflects typical 0.3% accuracy of spherical model
    if (typeof precision == 'undefined') precision = 4;

    var R = this.radius;
    var φ1 = this.lat.toRadians(),  λ1 = this.lon.toRadians();
    var φ2 = point.lat.toRadians(), λ2 = point.lon.toRadians();
    var Δφ = φ2 - φ1;
    var Δλ = λ2 - λ1;

    var a = Math.sin(Δφ/2) * Math.sin(Δφ/2) +
            Math.cos(φ1) * Math.cos(φ2) *
            Math.sin(Δλ/2) * Math.sin(Δλ/2);
    var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
    var d = R * c;

    return d.toPrecisionFixed(Number(precision));
}


/**
 * Returns the (initial) bearing from this point to the supplied point, in degrees
 *   see http://williams.best.vwh.net/avform.htm#Crs
 *
 * @this    {LatLon} latitude/longitude of origin point
 * @param   {LatLon} point: latitude/longitude of destination point
 * @returns {Number} initial bearing in degrees from North
 */
LatLon.prototype.bearingTo = function(point) {
    var φ1 = this.lat.toRadians(), φ2 = point.lat.toRadians();
    var Δλ = (point.lon-this.lon).toRadians();

    var y = Math.sin(Δλ) * Math.cos(φ2);
    var x = Math.cos(φ1)*Math.sin(φ2) -
            Math.sin(φ1)*Math.cos(φ2)*Math.cos(Δλ);
    var θ = Math.atan2(y, x);

    return (θ.toDegrees()+360) % 360;
}


/**
 * Returns final bearing arriving at supplied destination point from this point; the final bearing 
 * will differ from the initial bearing by varying degrees according to distance and latitude
 *
 * @this    {LatLon} latitude/longitude of origin point
 * @param   {LatLon} point: latitude/longitude of destination point
 * @returns {Number} final bearing in degrees from North
 */
LatLon.prototype.finalBearingTo = function(point) {
    // get initial bearing from supplied point back to this point...
    var φ1 = point.lat.toRadians(), φ2 = this.lat.toRadians();
    var Δλ = (this.lon-point.lon).toRadians();

    var y = Math.sin(Δλ) * Math.cos(φ2);
    var x = Math.cos(φ1)*Math.sin(φ2) -
            Math.sin(φ1)*Math.cos(φ2)*Math.cos(Δλ);
    var θ = Math.atan2(y, x);

    // ... & reverse it by adding 180°
    return (θ.toDegrees()+180) % 360;
}


/**
 * Returns the midpoint between this point and the supplied point.
 *   see http://mathforum.org/library/drmath/view/51822.html for derivation
 *
 * @this    {LatLon} latitude/longitude of origin point
 * @param   {LatLon} point: latitude/longitude of destination point
 * @returns {LatLon} midpoint between this point and the supplied point
 */
LatLon.prototype.midpointTo = function(point) {
    var φ1 = this.lat.toRadians(), λ1 = this.lon.toRadians();
    var φ2 = point.lat.toRadians();
    var Δλ = (point.lon-this.lon).toRadians();

    var Bx = Math.cos(φ2) * Math.cos(Δλ);
    var By = Math.cos(φ2) * Math.sin(Δλ);

    var φ3 = Math.atan2(Math.sin(φ1)+Math.sin(φ2),
                    Math.sqrt( (Math.cos(φ1)+Bx)*(Math.cos(φ1)+Bx) + By*By) );
    var λ3 = λ1 + Math.atan2(By, Math.cos(φ1) + Bx);
    λ3 = (λ3+3*Math.PI) % (2*Math.PI) - Math.PI; // normalise to -180..+180º

    return new LatLon(φ3.toDegrees(), λ3.toDegrees());
}


/**
 * Returns the destination point from this point having travelled the given distance (in km) on the 
 * given initial bearing (bearing may vary before destination is reached)
 *
 *   see http://williams.best.vwh.net/avform.htm#LL
 *
 * @this    {LatLon} latitude/longitude of origin point
 * @param   {Number} brng: initial bearing in degrees
 * @param   {Number} dist: distance in km
 * @returns {LatLon} destination point
 */
LatLon.prototype.destinationPoint = function(brng, dist) {
    var θ = Number(brng).toRadians();
    var δ = Number(dist) / this.radius; // angular distance in radians

    var φ1 = this.lat.toRadians();
    var λ1 = this.lon.toRadians();

    var φ2 = Math.asin( Math.sin(φ1)*Math.cos(δ) +
                        Math.cos(φ1)*Math.sin(δ)*Math.cos(θ) );
    var λ2 = λ1 + Math.atan2(Math.sin(θ)*Math.sin(δ)*Math.cos(φ1),
                             Math.cos(δ)-Math.sin(φ1)*Math.sin(φ2));
    λ2 = (λ2+3*Math.PI) % (2*Math.PI) - Math.PI; // normalise to -180..+180º

    return new LatLon(φ2.toDegrees(), λ2.toDegrees());
}


/**
 * Returns the point of intersection of two paths defined by point and bearing
 *
 *   see http://williams.best.vwh.net/avform.htm#Intersection
 *
 * @param   {LatLon} p1: first point
 * @param   {Number} brng1: initial bearing from first point
 * @param   {LatLon} p2: second point
 * @param   {Number} brng2: initial bearing from second point
 * @returns {LatLon} destination point (null if no unique intersection defined)
 */
LatLon.intersection = function(p1, brng1, p2, brng2) {
    var φ1 = p1.lat.toRadians(), λ1 = p1.lon.toRadians();
    var φ2 = p2.lat.toRadians(), λ2 = p2.lon.toRadians();
    var θ13 = Number(brng1).toRadians(), θ23 = Number(brng2).toRadians();
    var Δφ = φ2-φ1, Δλ = λ2-λ1;

    var δ12 = 2*Math.asin( Math.sqrt( Math.sin(Δφ/2)*Math.sin(Δφ/2) +
        Math.cos(φ1)*Math.cos(φ2)*Math.sin(Δλ/2)*Math.sin(Δλ/2) ) );
    if (δ12 == 0) return null;

    // initial/final bearings between points
    var θ1 = Math.acos( ( Math.sin(φ2) - Math.sin(φ1)*Math.cos(δ12) ) /
           ( Math.sin(δ12)*Math.cos(φ1) ) );
    if (isNaN(θ1)) θ1 = 0; // protect against rounding
    var θ2 = Math.acos( ( Math.sin(φ1) - Math.sin(φ2)*Math.cos(δ12) ) /
           ( Math.sin(δ12)*Math.cos(φ2) ) );

    if (Math.sin(λ2-λ1) > 0) {
        θ12 = θ1;
        θ21 = 2*Math.PI - θ2;
    } else {
        θ12 = 2*Math.PI - θ1;
        θ21 = θ2;
    }

    var α1 = (θ13 - θ12 + Math.PI) % (2*Math.PI) - Math.PI; // angle 2-1-3
    var α2 = (θ21 - θ23 + Math.PI) % (2*Math.PI) - Math.PI; // angle 1-2-3

    if (Math.sin(α1)==0 && Math.sin(α2)==0) return null; // infinite intersections
    if (Math.sin(α1)*Math.sin(α2) < 0) return null;      // ambiguous intersection

    //α1 = Math.abs(α1);
    //α2 = Math.abs(α2);
    // ... Ed Williams takes abs of α1/α2, but seems to break calculation?

    var α3 = Math.acos( -Math.cos(α1)*Math.cos(α2) +
                         Math.sin(α1)*Math.sin(α2)*Math.cos(δ12) );
    var δ13 = Math.atan2( Math.sin(δ12)*Math.sin(α1)*Math.sin(α2),
                          Math.cos(α2)+Math.cos(α1)*Math.cos(α3) )
    var φ3 = Math.asin( Math.sin(φ1)*Math.cos(δ13) +
                        Math.cos(φ1)*Math.sin(δ13)*Math.cos(θ13) );
    var Δλ13 = Math.atan2( Math.sin(θ13)*Math.sin(δ13)*Math.cos(φ1),
                           Math.cos(δ13)-Math.sin(φ1)*Math.sin(φ3) );
    var λ3 = λ1 + Δλ13;
    λ3 = (λ3+3*Math.PI) % (2*Math.PI) - Math.PI; // normalise to -180..+180º

    return new LatLon(φ3.toDegrees(), λ3.toDegrees());
}


/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  */

/**
 * Returns the distance from this point to the supplied point, in km, travelling along a rhumb line
 *
 *   see http://williams.best.vwh.net/avform.htm#Rhumb
 *
 * @this    {LatLon} latitude/longitude of origin point
 * @param   {LatLon} point: latitude/longitude of destination point
 * @returns {Number} distance in km between this point and destination point
 */
LatLon.prototype.rhumbDistanceTo = function(point) {
    var R = this.radius;
    var φ1 = this.lat.toRadians(), φ2 = point.lat.toRadians();
    var Δφ = φ2 - φ1;
    var Δλ = Math.abs(point.lon-this.lon).toRadians();
    // if dLon over 180° take shorter rhumb line across the anti-meridian:
    if (Math.abs(Δλ) > Math.PI) Δλ = Δλ>0 ? -(2*Math.PI-Δλ) : (2*Math.PI+Δλ);

    // on Mercator projection, longitude gets increasing stretched by latitude; q is the 'stretch factor'

    var Δψ = Math.log(Math.tan(φ2/2+Math.PI/4)/Math.tan(φ1/2+Math.PI/4));

    // the stretch factor becomes ill-conditioned along E-W line (0/0); use empirical tolerance to avoid it
    var q = Math.abs(Δψ) > 10e-12 ? Δφ/Δψ : Math.cos(φ1);

    // distance is pythagoras on 'stretched' Mercator projection
    var δ = Math.sqrt(Δφ*Δφ + q*q*Δλ*Δλ); // angular distance in radians
    var dist = δ * R;

    return dist.toPrecisionFixed(4); // 4 sig figs reflects typical 0.3% accuracy of spherical model
}


/**
 * Returns the bearing from this point to the supplied point along a rhumb line, in degrees
 *
 * @this    {LatLon} latitude/longitude of origin point
 * @param   {LatLon} point: latitude/longitude of destination point
 * @returns {Number} bearing in degrees from North
 */
LatLon.prototype.rhumbBearingTo = function(point) {
    var φ1 = this.lat.toRadians(), φ2 = point.lat.toRadians();
    var Δλ = (point.lon-this.lon).toRadians();
    // if dLon over 180° take shorter rhumb line across the anti-meridian:
    if (Math.abs(Δλ) > Math.PI) Δλ = Δλ>0 ? -(2*Math.PI-Δλ) : (2*Math.PI+Δλ);

    var Δψ = Math.log(Math.tan(φ2/2+Math.PI/4)/Math.tan(φ1/2+Math.PI/4));

    var θ = Math.atan2(Δλ, Δψ);

    return (θ.toDegrees()+360) % 360;
}


/**
 * Returns the destination point from this point having travelled the given distance (in km) on the 
 * given bearing along a rhumb line
 *
 * @this    {LatLon} latitude/longitude of origin point
 * @param   {Number} brng: bearing in degrees from North
 * @param   {Number} dist: distance in km
 * @returns {LatLon} destination point
 */
LatLon.prototype.rhumbDestinationPoint = function(brng, dist) {
    var δ = Number(dist) / this.radius; // angular distance in radians
    var φ1 = this.lat.toRadians(), λ1 = this.lon.toRadians();
    var θ = Number(brng).toRadians();

    var Δφ = δ * Math.cos(θ);

    var φ2 = φ1 + Δφ;
    // check for some daft bugger going past the pole, normalise latitude if so
    if (Math.abs(φ2) > Math.PI/2) φ2 = φ2>0 ? Math.PI-φ2 : -Math.PI-φ2;

    var Δψ = Math.log(Math.tan(φ2/2+Math.PI/4)/Math.tan(φ1/2+Math.PI/4));
    var q = Math.abs(Δψ) > 10e-12 ? Δφ / Δψ : Math.cos(φ1); // E-W course becomes ill-conditioned with 0/0

    var Δλ = δ*Math.sin(θ)/q;

    var λ2 = λ1 + Δλ;

    λ2 = (λ2 + 3*Math.PI) % (2*Math.PI) - Math.PI; // normalise to -180..+180º

    return new LatLon(φ2.toDegrees(), λ2.toDegrees());
}


/**
 * Returns the loxodromic midpoint (along a rhumb line) between this point and the supplied point.
 *   see http://mathforum.org/kb/message.jspa?messageID=148837
 *
 * @this    {LatLon} latitude/longitude of origin point
 * @param   {LatLon} point: latitude/longitude of destination point
 * @returns {LatLon} midpoint between this point and the supplied point
 */
LatLon.prototype.rhumbMidpointTo = function(point) {
    var φ1 = this.lat.toRadians(), λ1 = this.lon.toRadians();
    var φ2 = point.lat.toRadians(), λ2 = point.lon.toRadians();

    if (Math.abs(λ2-λ1) > Math.PI) λ1 += 2*Math.PI; // crossing anti-meridian

    var φ3 = (φ1+φ2)/2;
    var f1 = Math.tan(Math.PI/4 + φ1/2);
    var f2 = Math.tan(Math.PI/4 + φ2/2);
    var f3 = Math.tan(Math.PI/4 + φ3/2);
    var λ3 = ( (λ2-λ1)*Math.log(f3) + λ1*Math.log(f2) - λ2*Math.log(f1) ) / Math.log(f2/f1);

    if (!isFinite(λ3)) λ3 = (λ1+λ2)/2; // parallel of latitude

    λ3 = (λ3 + 3*Math.PI) % (2*Math.PI) - Math.PI; // normalise to -180..+180º

    return new LatLon(φ3.toDegrees(), λ3.toDegrees());
}


/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  */


/**
 * Returns a string representation of this point; format and dp as per lat()/lon()
 *
 * @this    {LatLon} latitude/longitude of origin point
 * @param   {String} [format]: return value as 'd', 'dm', 'dms'
 * @param   {Number} [dp=0|2|4]: number of decimal places to display
 * @returns {String} comma-separated latitude/longitude
 */
LatLon.prototype.toString = function(format, dp) {
    if (typeof format == 'undefined') format = 'dms';

    return Geo.toLat(this.lat, format, dp) + ', ' + Geo.toLon(this.lon, format, dp);
}


/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  */


// ---- extend Number object with methods for converting degrees/radians


/** Converts numeric degrees to radians */
if (typeof Number.prototype.toRadians == 'undefined') {
    Number.prototype.toRadians = function() {
        return this * Math.PI / 180;
    }
}


/** Converts radians to numeric (signed) degrees */
if (typeof Number.prototype.toDegrees == 'undefined') {
    Number.prototype.toDegrees = function() {
        return this * 180 / Math.PI;
    }
}


/** 
 * Formats the significant digits of a number, using only fixed-point notation (no exponential)
 * 
 * @param   {Number} precision: Number of significant digits to appear in the returned string
 * @returns {String} A string representation of number which contains precision significant digits
 */
if (typeof Number.prototype.toPrecisionFixed == 'undefined') {
    Number.prototype.toPrecisionFixed = function(precision) {

    // use standard toPrecision method
    var n = this.toPrecision(precision);

    // ... but replace +ve exponential format with trailing zeros
    n = n.replace(/(.+)e\+(.+)/, function(n, sig, exp) {
        sig = sig.replace(/\./, '');       // remove decimal from significand
        l = sig.length - 1;
        while (exp-- > l) sig = sig + '0'; // append zeros from exponent
        return sig;
    });

    // ... and replace -ve exponential format with leading zeros
    n = n.replace(/(.+)e-(.+)/, function(n, sig, exp) {
        sig = sig.replace(/\./, '');       // remove decimal from significand
        while (exp-- > 1) sig = '0' + sig; // prepend zeros from exponent
        return '0.' + sig;
    });

    return n;
  }
}


/** Trims whitespace from string (q.v. blog.stevenlevithan.com/archives/faster-trim-javascript) */
if (typeof String.prototype.trim == 'undefined') {
    String.prototype.trim = function() {
        return String(this).replace(/^\s\s*/, '').replace(/\s\s*$/, '');
    }
}


/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  */
if (!window.console) window.console = { log: function() {} };
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  */
/*  Geodesy representation conversion functions (c) Chris Veness 2002-2012                        */
/*   - www.movable-type.co.uk/scripts/latlong.html                                                */
/*                                                                                                */
/*  Sample usage:                                                                                 */
/*    var lat = Geo.parseDMS('51° 28′ 40.12″ N');                                                 */
/*    var lon = Geo.parseDMS('000° 00′ 05.31″ W');                                                */
/*    var p1 = new LatLon(lat, lon);                                                              */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  */


var Geo = {};  // Geo namespace, representing static class


/**
 * Parses string representing degrees/minutes/seconds into numeric degrees
 *
 * This is very flexible on formats, allowing signed decimal degrees, or deg-min-sec optionally
 * suffixed by compass direction (NSEW). A variety of separators are accepted (eg 3º 37' 09"W) 
 * or fixed-width format without separators (eg 0033709W). Seconds and minutes may be omitted. 
 * (Note minimal validation is done).
 *
 * @param   {String|Number} dmsStr: Degrees or deg/min/sec in variety of formats
 * @returns {Number} Degrees as decimal number
 * @throws  {TypeError} dmsStr is an object, perhaps DOM object without .value?
 */
Geo.parseDMS = function(dmsStr) {
  if (typeof deg == 'object') throw new TypeError('Geo.parseDMS - dmsStr is [DOM?] object');

  // check for signed decimal degrees without NSEW, if so return it directly
  if (typeof dmsStr === 'number' && isFinite(dmsStr)) return Number(dmsStr);

  // strip off any sign or compass dir'n & split out separate d/m/s
  var dms = String(dmsStr).trim().replace(/^-/,'').replace(/[NSEW]$/i,'').split(/[^0-9.,]+/);
  if (dms[dms.length-1]=='') dms.splice(dms.length-1);  // from trailing symbol

  if (dms == '') return NaN;

  // and convert to decimal degrees...
  switch (dms.length) {
    case 3:  // interpret 3-part result as d/m/s
      var deg = dms[0]/1 + dms[1]/60 + dms[2]/3600; 
      break;
    case 2:  // interpret 2-part result as d/m
      var deg = dms[0]/1 + dms[1]/60; 
      break;
    case 1:  // just d (possibly decimal) or non-separated dddmmss
      var deg = dms[0];
      // check for fixed-width unseparated format eg 0033709W
      //if (/[NS]/i.test(dmsStr)) deg = '0' + deg;  // - normalise N/S to 3-digit degrees
      //if (/[0-9]{7}/.test(deg)) deg = deg.slice(0,3)/1 + deg.slice(3,5)/60 + deg.slice(5)/3600; 
      break;
    default:
      return NaN;
  }
  if (/^-|[WS]$/i.test(dmsStr.trim())) deg = -deg; // take '-', west and south as -ve
  return Number(deg);
}


/**
 * Convert decimal degrees to deg/min/sec format
 *  - degree, prime, double-prime symbols are added, but sign is discarded, though no compass
 *    direction is added
 *
 * @private
 * @param   {Number} deg: Degrees
 * @param   {String} [format=dms]: Return value as 'd', 'dm', 'dms'
 * @param   {Number} [dp=0|2|4]: No of decimal places to use - default 0 for dms, 2 for dm, 4 for d
 * @returns {String} deg formatted as deg/min/secs according to specified format
 * @throws  {TypeError} deg is an object, perhaps DOM object without .value?
 */
Geo.toDMS = function(deg, format, dp) {
  if (typeof deg == 'object') throw new TypeError('Geo.toDMS - deg is [DOM?] object');
  if (isNaN(deg)) return null;  // give up here if we can't make a number from deg

    // default values
  if (typeof format == 'undefined') format = 'dms';
  if (typeof dp == 'undefined') {
    switch (format) {
      case 'd': dp = 4; break;
      case 'dm': dp = 2; break;
      case 'dms': dp = 0; break;
      default: format = 'dms'; dp = 0;  // be forgiving on invalid format
    }
  }

  deg = Math.abs(deg);  // (unsigned result ready for appending compass dir'n)

  switch (format) {
    case 'd':
      d = deg.toFixed(dp);     // round degrees
      if (d<100) d = '0' + d;  // pad with leading zeros
      if (d<10) d = '0' + d;
      dms = d + '\u00B0';      // add º symbol
      break;
    case 'dm':
      var min = (deg*60).toFixed(dp);  // convert degrees to minutes & round
      var d = Math.floor(min / 60);    // get component deg/min
      var m = (min % 60).toFixed(dp);  // pad with trailing zeros
      if (d<100) d = '0' + d;          // pad with leading zeros
      if (d<10) d = '0' + d;
      if (m<10) m = '0' + m;
      dms = d + '\u00B0' + m + '\u2032';  // add º, ' symbols
      break;
    case 'dms':
      var sec = (deg*3600).toFixed(dp);  // convert degrees to seconds & round
      var d = Math.floor(sec / 3600);    // get component deg/min/sec
      var m = Math.floor(sec/60) % 60;
      var s = (sec % 60).toFixed(dp);    // pad with trailing zeros
      if (d<100) d = '0' + d;            // pad with leading zeros
      if (d<10) d = '0' + d;
      if (m<10) m = '0' + m;
      if (s<10) s = '0' + s;
      dms = d + '\u00B0' + m + '\u2032' + s + '\u2033';  // add º, ', " symbols
      break;
  }

  return dms;
}


/**
 * Convert numeric degrees to deg/min/sec latitude (suffixed with N/S)
 *
 * @param   {Number} deg: Degrees
 * @param   {String} [format=dms]: Return value as 'd', 'dm', 'dms'
 * @param   {Number} [dp=0|2|4]: No of decimal places to use - default 0 for dms, 2 for dm, 4 for d
 * @returns {String} Deg/min/seconds
 */
Geo.toLat = function(deg, format, dp) {
  var lat = Geo.toDMS(deg, format, dp);
  return lat==null ? '–' : lat.slice(1) + (deg<0 ? 'S' : 'N');  // knock off initial '0' for lat!
}


/**
 * Convert numeric degrees to deg/min/sec longitude (suffixed with E/W)
 *
 * @param   {Number} deg: Degrees
 * @param   {String} [format=dms]: Return value as 'd', 'dm', 'dms'
 * @param   {Number} [dp=0|2|4]: No of decimal places to use - default 0 for dms, 2 for dm, 4 for d
 * @returns {String} Deg/min/seconds
 */
Geo.toLon = function(deg, format, dp) {
  var lon = Geo.toDMS(deg, format, dp);
  return lon==null ? '–' : lon + (deg<0 ? 'W' : 'E');
}


/**
 * Convert numeric degrees to deg/min/sec as a bearing (0º..360º)
 *
 * @param   {Number} deg: Degrees
 * @param   {String} [format=dms]: Return value as 'd', 'dm', 'dms'
 * @param   {Number} [dp=0|2|4]: No of decimal places to use - default 0 for dms, 2 for dm, 4 for d
 * @returns {String} Deg/min/seconds
 */
Geo.toBrng = function(deg, format, dp) {
  deg = (Number(deg)+360) % 360;  // normalise -ve values to 180º..360º
  var brng =  Geo.toDMS(deg, format, dp);
  return brng==null ? '–' : brng.replace('360', '0');  // just in case rounding took us up to 360º!
}


/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  */
if (!window.console) window.console = { log: function() {} };