多线程导致C的性能降低

时间:2016-08-10 10:15:25

标签: c multithreading performance

我在C中实现了一个实时信号处理算法,我试图使用多线程并行化一部分代码。

单线程实现的代码是

void calcTheta(float *theta, float **s, float ***q, float ***g,
               int *Ki, int m, int numObv, int numTask) {
    int i, j, k;

    for (i = 0; i < m; i++) {
        theta[i] = 0;
        for (j = 0; j < numObv; j++) {
            for (k = 0; k < numTask; k++) {
                theta[i] += (Ki[k] * (pow(fabs(q[i][j][k]), 2) / g[i][j][k]) - s[i][k]) /
                             (s[i][k] * (s[i][k] - (pow(fabs(q[i][j][k]), 2) / g[i][j][k])));
            }//k
        }//j
        theta[i] = (numTask * numObv) / theta[i];
    }//i
}

多线程实现使用线程假脱机的想法,我创建了一些线程并继续发信号通知他们使用特定的数据数组进行处理。代码如下:

#define NUM_THREADS_THETA 2
#define TRUE 1
#define FALSE 0
#define READY 1
#define DONE 0

struct threadThetaData {
    float *theta;
    float **s;
    float ***q;
    float ***g;
    int *Ki;
    int numObv;
    int numTask;
    int threadId;
};

struct threadThetaData dataArrayTheta[NUM_THREADS_THETA];
int termThread[NUM_THREADS_THETA];
int statusThread[NUM_THREADS_THETA];
int iVal[NUM_THREADS_THETA];
pthread_mutex_t mutexThreadProc[NUM_THREADS_THETA];
pthread_mutex_t mutexMainProc[NUM_THREADS_THETA];
pthread_cond_t condThreadProc[NUM_THREADS_THETA];
pthread_cond_t condMainProc[NUM_THREADS_THETA];

void *doProcTheta(void *threadArg) {
    struct threadThetaData *myData = (struct threadThetaData *)threadArg;

    float *theta = myData->theta;
    float **s = myData->s;
    float ***q = myData->q;
    float ***g = myData->g;
    int *Ki = myData->Ki;
    int numObv = myData->numObv;
    int numTask = myData->numTask;
    int threadId = myData->threadId;

    int j, k;

    while(1) {
        //printf("thread %d waiting for signal from master..\n", threadId);
        pthread_mutex_lock(&mutexThreadProc[threadId]);
        while (statusThread[threadId] != READY)
            pthread_cond_wait(&condThreadProc[threadId], &mutexThreadProc[threadId]);
        pthread_mutex_unlock(&mutexThreadProc[threadId]);

        //printf("thread %d got signal from master..\n", threadId);

        if (termThread[threadId] == TRUE)
            pthread_exit(NULL);

        theta[iVal[threadId]] = 0;
        for (j = 0; j < numObv; j++) {
            for (k = 0; k < numTask; k++) {
                theta[iVal[threadId]] += (Ki[k]*(pow(fabs(q[iVal[threadId]][j][k]),2)/g[iVal[threadId]][j][k]) - s[iVal[threadId]][k])/(s[iVal[threadId]][k]*(s[iVal[threadId]][k] - (pow(fabs(q[iVal[threadId]][j][k]),2)/g[iVal[threadId]][j][k])));
            }//k
        }//j
        theta[iVal[threadId]] = (numTask*numObv)/theta[iVal[threadId]];

        pthread_mutex_lock(&mutexMainProc[threadId]);
        statusThread[threadId] = DONE;
        pthread_cond_signal(&condMainProc[threadId]);
        pthread_mutex_unlock(&mutexMainProc[threadId]);

        //printf("thread %d signaled to master..\n", threadId);
    }
}

void calcTheta(float *theta,float **s,float ***q,float ***g,int *Ki,int m, int numObv, int numTask)
{
    int i,j;

    pthread_t thetaThreads[NUM_THREADS_THETA];
    int numThreadBlks = m/NUM_THREADS_THETA;
    int numThreadRem = m%NUM_THREADS_THETA;
    int mCount = 0;

    for(i=0;i<NUM_THREADS_THETA;i++)
    {
        pthread_mutex_init(&mutexThreadProc[i], NULL);
        pthread_mutex_init(&mutexMainProc[i], NULL);
        pthread_cond_init (&condThreadProc[i], NULL);
        pthread_cond_init (&condMainProc[i], NULL);
        dataArrayTheta[i].theta = theta;
        dataArrayTheta[i].s = s;
        dataArrayTheta[i].q = q;
        dataArrayTheta[i].g = g;
        dataArrayTheta[i].Ki = Ki;
        dataArrayTheta[i].numObv = numObv;
        dataArrayTheta[i].numTask = numTask;
        dataArrayTheta[i].threadId = i;
        termThread[i] = FALSE;
        statusThread[i] = DONE;
        pthread_create(&thetaThreads[i],NULL,doProcTheta,(void *)&dataArrayTheta[i]);

    }

    for(i=0;i<numThreadBlks;i++)
    {
        for(j=0;j<NUM_THREADS_THETA;j++)
        {
            pthread_mutex_lock(&mutexThreadProc[j]);
            statusThread[j] = READY;
            iVal[j] = mCount;
            mCount++;
            pthread_cond_signal(&condThreadProc[j]);
            pthread_mutex_unlock(&mutexThreadProc[j]);
            //printf("Signaled thread %d from master ... Waiting  on signal ..\n",j);
        }

        for(j=0;j<NUM_THREADS_THETA;j++)
        {
            pthread_mutex_lock(&mutexMainProc[j]);
            while (statusThread[j] != DONE)
                pthread_cond_wait(&condMainProc[j], &mutexMainProc[j]);
            pthread_mutex_unlock(&mutexMainProc[j]);
            //printf("Got signal from thread %d to  master \n",j);
        }

    }

    for(j=0;j<numThreadRem;j++)
    {
        pthread_mutex_lock(&mutexThreadProc[j]);
        statusThread[j] = READY;
        iVal[j] = mCount;
        mCount++;
        pthread_cond_signal(&condThreadProc[j]);
        pthread_mutex_unlock(&mutexThreadProc[j]);
    }

    for(j=0;j<numThreadRem;j++)
    {
        pthread_mutex_lock(&mutexMainProc[j]);
        while (statusThread[j] != DONE)
            pthread_cond_wait(&condMainProc[j], &mutexMainProc[j]);
        pthread_mutex_unlock(&mutexMainProc[j]);
    }

    for(j=0;j<NUM_THREADS_THETA;j++)
    {
        pthread_mutex_lock(&mutexThreadProc[j]);
        statusThread[j] = READY;
        termThread[j] = TRUE;
        pthread_cond_signal(&condThreadProc[j]);
        pthread_mutex_unlock(&mutexThreadProc[j]);

        pthread_join(thetaThreads[j],NULL);

        pthread_mutex_destroy(&mutexThreadProc[j]);
        pthread_cond_destroy(&condThreadProc[j]);
        pthread_mutex_destroy(&mutexMainProc[j]);
        pthread_cond_destroy(&condMainProc[j]);
    }

}

数组维度:

float theta[m];
float s[m][numTask];
float q[m][numObv][numTask];
float g[m][numObv][numTask];
int Ki[numTask];

对于

的特定数据集
m=661
numObv=96
numTask=1024

运行时间是:

Single threaded : 4.5 seconds
Multithreaded with 2 threads : 6.9 seconds 

我预计多线程代码的运行时在相反的情况下会比单线程代码提供一些性能改进。任何指向我在这里缺少的东西都会非常感激。

1 个答案:

答案 0 :(得分:5)

您的多线程实现似乎可以解决手头的问题。单线程代码显示每个theta元素都是独立于所有其他theta元素计算的。

因此,您不需要互斥锁和条件,因为线程之间不需要数据交换/同步。让线程处理theta计算的不同范围。

使用m=661和2个线程,则第一个线程应在0..330范围内计算theta,第二个线程应在331..660范围内计算theta。启动两个线程并等待它们完成(也称为join)。

您几乎可以将单线程代码用于多线程实现。您只需要为函数添加一个start-index。