问题:
1)当使用BLAS时,numpy.dot()
在下面的示例代码中如何慢于*
?
2)在这种情况下,是否有一种方法可以实现numpy.dot()
而不是*
更快的数组乘法?我认为我错过了一条能回答问题1的重要信息,并表示numpy.dot()
至少与*
一样快,如果不是更快的话。
详情如下。提前感谢您的回答和帮助。
详细信息:
我正在编写一个程序,它在Windows 7上使用python 2.7(64位),numpy 1.11.2,Anaconda2解决耦合的PDE。为了提高程序输出的准确性,我需要使用大型数组(形状(2, 2 ^ 14)和更大的集成步骤,每个模拟产生了大量的数组乘法运算,我需要优化速度。
拥有looked around,只要安装BLAS并使用numpy,似乎numpy.dot()
应该用于*
的更快的数组乘法。这经常被推荐。但是,当我使用下面的计时器脚本时,*
比numpy.dot()
快至少7倍。在某些情况下,这会增加到因子> 1000:
from __future__ import division
import numpy as np
import timeit
def dotter(a, b):
return np.dot(a, b)
def timeser(a, b):
return a*b
def wrapper(func, a, b):
def wrapped():
return func(a, b)
return wrapped
size = 100
num = int(3e5)
a = np.random.random_sample((size, size))
b = np.random.random_sample((size, size))
wrapped = wrapper(dotter, a, b)
dotTime = timeit.timeit(wrapped, number=num)/num
print "\nTime for np.dot: ", dotTime
wrapped = wrapper(timeser, a, b)
starTime = timeit.timeit(wrapped, number=num)/num
print "\nTime for *: ", starTime
print "dotTime / starTime: ", dotTime/starTime
输出:
Time for np.dot: 8.58201189949e-05
Time for *: 1.07564737429e-05
dotTime / starTime: 7.97846218436
numpy.dot()
和*
都分布在多个核心上,我认为这表明BLAS在某种程度上起作用,至少:
看numpy.__config__.show()
好像我正在使用BLAS和lapack(虽然不是openblas_lapack?):
lapack_opt_info:
libraries = ['mkl_lapack95_lp64', 'mkl_blas95_lp64', 'mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'libiomp5md', 'libifportmd']
library_dirs = ['C:/Program Files (x86)/Intel/Composer XE/mkl/lib/intel64']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['C:/Program Files (x86)/Intel/Composer XE/mkl/include']
blas_opt_info:
libraries = ['mkl_lapack95_lp64', 'mkl_blas95_lp64', 'mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'libiomp5md', 'libifportmd']
library_dirs = ['C:/Program Files (x86)/Intel/Composer XE/mkl/lib/intel64']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['C:/Program Files (x86)/Intel/Composer XE/mkl/include']
openblas_lapack_info:
NOT AVAILABLE
lapack_mkl_info:
libraries = ['mkl_lapack95_lp64', 'mkl_blas95_lp64', 'mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'libiomp5md', 'libifportmd']
library_dirs = ['C:/Program Files (x86)/Intel/Composer XE/mkl/lib/intel64']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['C:/Program Files (x86)/Intel/Composer XE/mkl/include']
blas_mkl_info:
libraries = ['mkl_lapack95_lp64', 'mkl_blas95_lp64', 'mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'libiomp5md', 'libifportmd']
library_dirs = ['C:/Program Files (x86)/Intel/Composer XE/mkl/lib/intel64']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['C:/Program Files (x86)/Intel/Composer XE/mkl/include']
答案 0 :(得分:4)
np.dot
调用矩阵 - 矩阵乘法,而*
是元素乘法。对于Python 3.5 +,矩阵 - 矩阵乘法的符号为@
。