我想在纽约地区获得lat-long坐标的zipcode
我尝试使用谷歌的反向地理编码器API,但每天限制为2500次点击,因此可以批量处理我的数据框。
接下来,我尝试使用带有数据集邮政编码的库(zipcode),但无法将纬度经度与列车数据集的坐标相匹配,因为所有纬度坐标都不在数据集中。
此外,虽然使用KNN来预测数据集的zipcode但无法获得正确的结果。
zipcode_latlon = zipcode[zipcode$state=="NY",c(1,4,5)]
train_latlon = train_data[,c("latitude","longitude")]
zip1 = rep(10007, nrow(train_latlon))
zip1 = as.character(zip1)
train_latlon = cbind(zip1, train_latlon)
colnames(train_latlon) = c("zip","latitude","longitude")
knn_fit = knn(zipcode_latlon, train_latlon,zipcode_latlon$zip, k=1)
需要知道如何从lat中批量获取zipcodes,任何方法在R中都会很好。
答案 0 :(得分:4)
我认为你这是错误的做法。您可以找到没有地理编码器的纬度/经度坐标的邮政编码 - 您只需下载美国zipcodes shapefile here然后进行空间连接:
library(sp)
library(rgdal)
#import zips shapefile and transform CRS
zips <- readOGR("cb_2015_us_zcta510_500k.shp")
zips <- spTransform(zips, CRS("+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0"))
#here is a sample with three cities in New York State and their coordinates
df <- as.data.frame(matrix(nrow = 3, ncol =3))
colnames(df) <- c("lat", "lon", "city")
df$lon <- c(43.0481, 43.1610, 42.8864)
df$lat <- c(-76.1474, -77.6109,-78.8784)
df$city <- c("Syracuse", "Rochester", "Buffalo")
df
lat lon city
1 -76.1474 43.0481 Syracuse
2 -77.6109 43.1610 Rochester
3 -78.8784 42.8864 Buffalo
#extract only the lon/lat
xy <- df[,c(1,2)]
#transform coordinates into a SpatialPointsDataFrame
spdf <- SpatialPointsDataFrame(coords = xy, data = df, proj4string = CRS("+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0"))
#subset only the zipcodes in which points are found
zips_subset <- zips[spdf, ]
#NOTE: the column in zips_subset containing zipcodes is ZCTA5CE10
#use over() to overlay points in polygons and then add that to the original dataframe
df$zip <- over(spdf, zips_subset[,"ZCTA5CE10"])
瞧!你有每个点的邮政编码
df
lat lon city ZCTA5CE10
1 -76.1474 43.0481 Syracuse 13202
2 -77.6109 43.1610 Rochester 14604
3 -78.8784 42.8864 Buffalo 14202