我有一个pandas数据框,如下所示......
C1 C2 C3 C4
0 -1 -3 3 0.75
1 10 20 30 -0.50
我想只添加每行中前两列的值小于零的列。例如,我将针对上述情况得到的系列如下......
CR
0 -4
1 0
我知道如何应用下面的其他功能......
df.iloc[:, :-2].abs().sum(axis = 1)
有没有办法使用lambda函数?
答案 0 :(得分:2)
df = df.iloc[:,:2].where(df < 0).sum(axis=1)
print (df)
0 -4.0
1 0.0
dtype: float64
如果需要selection by callable的解决方案:
df = df.iloc[:, lambda df: [0,1]].where(df < 0).sum(axis=1)
print (df)
0 -4.0
1 0.0
dtype: float64
lambda
中的python
功能也适用于此。
lambda in pandas :
#sample data
np.random.seed(100)
df = pd.DataFrame(np.random.randint(10, size=(5,5)), columns=list('ABCDE'))
print (df)
A B C D E
0 8 8 3 7 7
1 0 4 2 5 2
2 2 2 1 0 8
3 4 0 9 6 2
4 4 1 5 3 4
按行.apply(axis=0)
获取差异,默认值为.apply()
:
#instead function f1 is possible use lambda, if function is simple
print (df.apply(lambda x: x.max() - x.min()))
A 8
B 8
C 8
D 7
E 6
dtype: int64
def f1(x):
#print (x)
return x.max() - x.min()
print (df.apply(f1))
A 8
B 8
C 8
D 7
E 6
dtype: int64
按列.apply(axis=1)
#instead function f2 is possible use lambda, if function is simple
print (df.apply(lambda x: x.max() - x.min(), axis=1))
0 5
1 5
2 8
3 9
4 4
dtype: int64
def f2(x):
#print (x)
return x.max() - x.min()
print (df.apply(f2, axis=1))
0 5
1 5
2 8
3 9
4 4
dtype: int64