神经网络MNIST:反向传播是正确的,但训练/测试准确度非常低

时间:2017-08-01 21:08:45

标签: machine-learning neural-network deep-learning classification backpropagation

我正在建立一个神经网络,以学习识别来自MNIST的手写数字。我已经确认反向传播可以完美地计算梯度(梯度检查会给出误差<10 ^ -10)。

似乎无论我如何训练重量,成本函数总是倾向于大约3.24-3.25(从不低于,仅从上方接近)并且训练/测试集的准确度非常低(大约11%,测试集)。似乎最终的h值都非常接近0.1并且彼此非常接近。

我无法找到为什么我的程序无法产生更好的结果。我想知道是否有人可以查看我的代码,请告诉我发生这种情况的原因。非常感谢你的帮助,我真的很感激!

这是我的Python代码:

import numpy as np
import math
from tensorflow.examples.tutorials.mnist import input_data

# Neural network has four layers
# The input layer has 784 nodes
# The two hidden layers each have 5 nodes
# The output layer has 10 nodes
num_layer = 4
num_node = [784,5,5,10]
num_output_node = 10

# 30000 training sets are used
# 10000 test sets are used
# Can be adjusted
Ntrain = 30000
Ntest = 10000

# Sigmoid Function
def g(X):
    return 1/(1 + np.exp(-X))

# Forwardpropagation
def h(W,X):
    a = X
    for l in range(num_layer - 1):
        a = np.insert(a,0,1)
        z = np.dot(a,W[l])
        a = g(z)
    return a      

# Cost Function
def J(y, W, X, Lambda):
    cost = 0
    for i in range(Ntrain):
        H = h(W,X[i])
        for k in range(num_output_node):            
            cost = cost + y[i][k] * math.log(H[k]) + (1-y[i][k]) * math.log(1-H[k])
    regularization = 0
    for l in range(num_layer - 1):
        for i in range(num_node[l]):
            for j in range(num_node[l+1]):
                regularization = regularization + W[l][i+1][j] ** 2
    return (-1/Ntrain * cost + Lambda / (2*Ntrain) * regularization)

# Backpropagation - confirmed to be correct
# Algorithm based on https://www.coursera.org/learn/machine-learning/lecture/1z9WW/backpropagation-algorithm
# Returns D, the value of the gradient
def BackPropagation(y, W, X, Lambda):
    delta = np.empty(num_layer-1, dtype = object)
    for l in range(num_layer - 1):
        delta[l] = np.zeros((num_node[l]+1,num_node[l+1]))
    for i in range(Ntrain):
        A = np.empty(num_layer-1, dtype = object)
        a = X[i]
        for l in range(num_layer - 1):
            A[l] = a
            a = np.insert(a,0,1)
            z = np.dot(a,W[l])
            a = g(z)
        diff = a - y[i]
        delta[num_layer-2] = delta[num_layer-2] + np.outer(np.insert(A[num_layer-2],0,1),diff)
        for l in range(num_layer-2):
            index = num_layer-2-l
            diff = np.multiply(np.dot(np.array([W[index][k+1] for k in range(num_node[index])]), diff), np.multiply(A[index], 1-A[index])) 
            delta[index-1] = delta[index-1] + np.outer(np.insert(A[index-1],0,1),diff)
    D = np.empty(num_layer-1, dtype = object)
    for l in range(num_layer - 1):
        D[l] = np.zeros((num_node[l]+1,num_node[l+1]))
    for l in range(num_layer-1):
        for i in range(num_node[l]+1):
            if i == 0:
                for j in range(num_node[l+1]):
                    D[l][i][j] = 1/Ntrain * delta[l][i][j]
            else:
                for j in range(num_node[l+1]):
                    D[l][i][j] = 1/Ntrain * (delta[l][i][j] + Lambda * W[l][i][j])
    return D

# Neural network - this is where the learning/adjusting of weights occur
# W is the weights
# learn is the learning rate
# iterations is the number of iterations we pass over the training set
# Lambda is the regularization parameter
def NeuralNetwork(y, X, learn, iterations, Lambda):

    W = np.empty(num_layer-1, dtype = object)
    for l in range(num_layer - 1):
        W[l] = np.random.rand(num_node[l]+1,num_node[l+1])/100
    for k in range(iterations):
        print(J(y, W, X, Lambda))
        D = BackPropagation(y, W, X, Lambda)
        for l in range(num_layer-1):
            W[l] = W[l] - learn * D[l]
    print(J(y, W, X, Lambda))
    return W

mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

# Training data, read from MNIST
inputpix = []
output = []

for i in range(Ntrain):
    inputpix.append(2 * np.array(mnist.train.images[i]) - 1)
    output.append(np.array(mnist.train.labels[i]))

np.savetxt('input.txt', inputpix, delimiter=' ')
np.savetxt('output.txt', output, delimiter=' ')

# Train the weights
finalweights = NeuralNetwork(output, inputpix, 2, 5, 1)

# Test data
inputtestpix = []
outputtest = []

for i in range(Ntest):
    inputtestpix.append(2 * np.array(mnist.test.images[i]) - 1)
    outputtest.append(np.array(mnist.test.labels[i]))

np.savetxt('inputtest.txt', inputtestpix, delimiter=' ')
np.savetxt('outputtest.txt', outputtest, delimiter=' ')

# Determine the accuracy of the training data
count = 0
for i in range(Ntrain):
    H = h(finalweights,inputpix[i])
    print(H)
    for j in range(num_output_node):
        if H[j] == np.amax(H) and output[i][j] == 1:
            count = count + 1
print(count/Ntrain)

# Determine the accuracy of the test data
count = 0
for i in range(Ntest):
    H = h(finalweights,inputtestpix[i])
    print(H)
    for j in range(num_output_node):
        if H[j] == np.amax(H) and outputtest[i][j] == 1:
            count = count + 1
print(count/Ntest)

2 个答案:

答案 0 :(得分:3)

你的网络很小,5个神经元使它基本上成为线性模型。将其增加到每层256个。

注意,这个简单的线性模型有768 * 10 + 10(偏差)参数,最多可累加7690个浮点数。另一方面,你的神经网络有768 * 5 + 5 + 5 * 5 + 5 + 5 * 10 + 10 = 3845 + 30 + 60 = 3935.换句话说,尽管是非线性神经网络,它实际上比一个更简单的模型应用于此问题的微不足道的逻辑回归。逻辑回归本身可以获得大约11%的误差,因此你真的不能指望它击败它。当然这不是一个严格的论点,但应该给你一些直觉,说明它为什么不起作用。

第二个问题与其他超参数有关,您似乎正在使用:

  • 巨大的学习率(是2?)它应该更多的是0.0001
  • 很少的训练迭代(你刚刚执行了5个时期?)
  • 你的正则化参数很大(它被设置为1),所以你的网络因学习任何东西而受到严重惩罚 - 再次 - 将其改为更小的数量级

答案 1 :(得分:0)

NN架构很可能不合适。也许,学习率高/低。或者正则化参数存在大多数问题。

相关问题