快速素数分解模块

时间:2011-01-10 04:19:07

标签: python algorithm prime-factoring

我正在寻找实现清除算法,以便在python,伪代码或其他任何内容中获得 N 的素数因子分解 - 可读。有一些要求/事实:

  • N 介于1到20位之间
  • 没有预先计算的查找表,但记忆很好。
  • 无需在数学上证明(例如,如果需要,可以依赖Goldbach猜想)
  • 不需要精确,如果需要,可以是概率/确定性的

我需要一个快速素数因子分解算法,不仅适用于自身,还适用于许多其他算法,例如计算Euler phi(n)

我已经尝试过维基百科的其他算法,但要么我无法理解它们(ECM),要么我无法从算法(Pollard-Brent)创建一个有效的实现。

我对Pollard-Brent算法非常感兴趣,所以对它的任何更多信息/实现都会非常好。

谢谢!

修改

在搞砸了一下后,我创建了一个非常快速的素数/分解模块。它结合了优化的试验分割算法,Pollard-Brent算法,米勒 - 拉宾素性测试和我在互联网上找到的最快的素数。 gcd是一个有规律的Euclid的GCD实现(二进制Euclid的GCD比常规GCD慢很多)。

恩惠

哦,快乐,可以获得赏金!但我怎么能赢呢?

  • 在我的模块中找到最佳化或错误。
  • 提供替代/更好的算法/实施。

最完整/最有建设性的答案得到了赏金。

最后是模块本身:

import random

def primesbelow(N):
    # http://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    #""" Input N>=6, Returns a list of primes, 2 <= p < N """
    correction = N % 6 > 1
    N = {0:N, 1:N-1, 2:N+4, 3:N+3, 4:N+2, 5:N+1}[N%6]
    sieve = [True] * (N // 3)
    sieve[0] = False
    for i in range(int(N ** .5) // 3 + 1):
        if sieve[i]:
            k = (3 * i + 1) | 1
            sieve[k*k // 3::2*k] = [False] * ((N//6 - (k*k)//6 - 1)//k + 1)
            sieve[(k*k + 4*k - 2*k*(i%2)) // 3::2*k] = [False] * ((N // 6 - (k*k + 4*k - 2*k*(i%2))//6 - 1) // k + 1)
    return [2, 3] + [(3 * i + 1) | 1 for i in range(1, N//3 - correction) if sieve[i]]

smallprimeset = set(primesbelow(100000))
_smallprimeset = 100000
def isprime(n, precision=7):
    # http://en.wikipedia.org/wiki/Miller-Rabin_primality_test#Algorithm_and_running_time
    if n < 1:
        raise ValueError("Out of bounds, first argument must be > 0")
    elif n <= 3:
        return n >= 2
    elif n % 2 == 0:
        return False
    elif n < _smallprimeset:
        return n in smallprimeset


    d = n - 1
    s = 0
    while d % 2 == 0:
        d //= 2
        s += 1

    for repeat in range(precision):
        a = random.randrange(2, n - 2)
        x = pow(a, d, n)

        if x == 1 or x == n - 1: continue

        for r in range(s - 1):
            x = pow(x, 2, n)
            if x == 1: return False
            if x == n - 1: break
        else: return False

    return True

# https://comeoncodeon.wordpress.com/2010/09/18/pollard-rho-brent-integer-factorization/
def pollard_brent(n):
    if n % 2 == 0: return 2
    if n % 3 == 0: return 3

    y, c, m = random.randint(1, n-1), random.randint(1, n-1), random.randint(1, n-1)
    g, r, q = 1, 1, 1
    while g == 1:
        x = y
        for i in range(r):
            y = (pow(y, 2, n) + c) % n

        k = 0
        while k < r and g==1:
            ys = y
            for i in range(min(m, r-k)):
                y = (pow(y, 2, n) + c) % n
                q = q * abs(x-y) % n
            g = gcd(q, n)
            k += m
        r *= 2
    if g == n:
        while True:
            ys = (pow(ys, 2, n) + c) % n
            g = gcd(abs(x - ys), n)
            if g > 1:
                break

    return g

smallprimes = primesbelow(1000) # might seem low, but 1000*1000 = 1000000, so this will fully factor every composite < 1000000
def primefactors(n, sort=False):
    factors = []

    for checker in smallprimes:
        while n % checker == 0:
            factors.append(checker)
            n //= checker
        if checker > n: break

    if n < 2: return factors

    while n > 1:
        if isprime(n):
            factors.append(n)
            break
        factor = pollard_brent(n) # trial division did not fully factor, switch to pollard-brent
        factors.extend(primefactors(factor)) # recurse to factor the not necessarily prime factor returned by pollard-brent
        n //= factor

    if sort: factors.sort()

    return factors

def factorization(n):
    factors = {}
    for p1 in primefactors(n):
        try:
            factors[p1] += 1
        except KeyError:
            factors[p1] = 1
    return factors

totients = {}
def totient(n):
    if n == 0: return 1

    try: return totients[n]
    except KeyError: pass

    tot = 1
    for p, exp in factorization(n).items():
        tot *= (p - 1)  *  p ** (exp - 1)

    totients[n] = tot
    return tot

def gcd(a, b):
    if a == b: return a
    while b > 0: a, b = b, a % b
    return a

def lcm(a, b):
    return abs((a // gcd(a, b)) * b)

8 个答案:

答案 0 :(得分:42)

如果您不想重新发明轮子,请使用图书馆sympy

pip install sympy

使用功能sympy.ntheory.factorint

>>> from sympy.ntheory import factorint
>>> factorint(10**20+1)
{73: 1, 5964848081: 1, 1676321: 1, 137: 1}

你可以考虑一些非常大的数字:

>>> factorint(10**100+1)
{401: 1, 5964848081: 1, 1676321: 1, 1601: 1, 1201: 1, 137: 1, 73: 1, 129694419029057750551385771184564274499075700947656757821537291527196801: 1}

答案 1 :(得分:13)

答案 2 :(得分:13)

无需使用smallprimes计算primesbelow,请使用smallprimeset

smallprimes = (2,) + tuple(n for n in xrange(3,1000,2) if n in smallprimeset)

primefactors划分为两个函数来处理smallprimes,将其他函数划分为pollard_brent,这样可以节省几次迭代,因为所有小权限的权力都将从n中划分。

def primefactors(n, sort=False):
    factors = []

    limit = int(n ** .5) + 1
    for checker in smallprimes:
        print smallprimes[-1]
        if checker > limit: break
        while n % checker == 0:
            factors.append(checker)
            n //= checker


    if n < 2: return factors
    else : 
        factors.extend(bigfactors(n,sort))
        return factors

def bigfactors(n, sort = False):
    factors = []
    while n > 1:
        if isprime(n):
            factors.append(n)
            break
        factor = pollard_brent(n) 
        factors.extend(bigfactors(factor,sort)) # recurse to factor the not necessarily prime factor returned by pollard-brent
        n //= factor

    if sort: factors.sort()    
    return factors

通过考虑Pomerance,Selfridge和Wagstaff以及Jaeschke的验证结果,您可以减少isprime中使用Miller-Rabin素性测试的重复次数。来自Wiki

  • 如果n&lt; 1,373,653,足以测试a = 2和3;
  • 如果n&lt; 9,080,191,足以测试a = 31和73;
  • 如果n&lt; 4,759,123,141,足以测试a = 2,7和61;
  • 如果n&lt; 2,152,302,898,747,足以测试a = 2,3,5,7和11;
  • 如果n&lt; 3,474,749,660,383,足以测试a = 2,3,5,7,11和13;
  • 如果n&lt; 341,550,071,728,321,足以测试a = 2,3,5,7,11,13和17。

修改1 :更正了if-else的回复,以便将重要因素附加到primefactors中的因素。

答案 3 :(得分:4)

即使在目前的情况下,仍有几个地方需要注意。

  1. 不要每个循环checker*checker使用s=ceil(sqrt(num))checher < s
  2. checher每次加2,忽略除2
  3. 之外的所有偶数
  4. 使用divmod代替%//

答案 4 :(得分:3)

你应该做一些你可以在这里看到的主要检测, Fast algorithm for finding prime numbers?

你应该阅读整个博客,但是他列出了一些用于测试素数的算法。

答案 5 :(得分:3)

有一个python库,其中包含一系列素性测试(包括不正确的测试)。它被称为pyprimes。为了后人的目的,它值得一提。我认为它不包括你提到的算法。

答案 6 :(得分:1)

你可以将因子分解到极限,然后使用布伦特来获得更高的因子

from fractions import gcd
from random import randint

def brent(N):
   if N%2==0: return 2
   y,c,m = randint(1, N-1),randint(1, N-1),randint(1, N-1)
   g,r,q = 1,1,1
   while g==1:             
       x = y
       for i in range(r):
          y = ((y*y)%N+c)%N
       k = 0
       while (k<r and g==1):
          ys = y
          for i in range(min(m,r-k)):
             y = ((y*y)%N+c)%N
             q = q*(abs(x-y))%N
          g = gcd(q,N)
          k = k + m
       r = r*2
   if g==N:
       while True:
          ys = ((ys*ys)%N+c)%N
          g = gcd(abs(x-ys),N)
          if g>1:  break
   return g

def factorize(n1):
    if n1==0: return []
    if n1==1: return [1]
    n=n1
    b=[]
    p=0
    mx=1000000
    while n % 2 ==0 : b.append(2);n//=2
    while n % 3 ==0 : b.append(3);n//=3
    i=5
    inc=2
    while i <=mx:
       while n % i ==0 : b.append(i); n//=i
       i+=inc
       inc=6-inc
    while n>mx:
      p1=n
      while p1!=p:
          p=p1
          p1=brent(p)
      b.append(p1);n//=p1 
    if n!=1:b.append(n)   
    return sorted(b)

from functools import reduce
#n= 2**1427 * 31 #
n= 67898771  * 492574361 * 10000223 *305175781* 722222227*880949 *908909
li=factorize(n)
print (li)
print (n - reduce(lambda x,y :x*y ,li))

答案 7 :(得分:0)

我在计算数字2**1427 * 31时遇到了此代码中的错误。

  File "buckets.py", line 48, in prettyprime
    factors = primefactors.primefactors(n, sort=True)
  File "/private/tmp/primefactors.py", line 83, in primefactors
    limit = int(n ** .5) + 1
OverflowError: long int too large to convert to float

此代码段:

limit = int(n ** .5) + 1
for checker in smallprimes:
    if checker > limit: break
    while n % checker == 0:
        factors.append(checker)
        n //= checker
        limit = int(n ** .5) + 1
        if checker > limit: break

应该改写成

for checker in smallprimes:
    while n % checker == 0:
        factors.append(checker)
        n //= checker
    if checker > n: break

无论如何都可能在实际输入上执行得更快。平方根很慢 - 基本上相当于很多次乘法 - smallprimes只有几十个成员,这样我们就可以从紧密内循环中删除n ** .5的计算,这在保理时非常有用像2**1427这样的数字。如果我们关心的只是&#34;那么[平方]是没有理由计算sqrt(2**1427)sqrt(2**1426)sqrt(2**1425)等等。检查员超过n&#34;。

重写代码在显示大数字时不会抛出异常,大约是timeit的两倍(对于示例输入2和{ {1}})。

另请注意,2**718 * 31会返回错误的结果,但只要我们不依赖它,这是可以的。恕我直言,你应该重写该功能的介绍

isprime(2)