OpenCL返回0

时间:2017-11-20 22:34:11

标签: python opencl gpu pyopencl

我正在尝试使用OpenCL加速我的神经网络,我遇到的唯一问题是当我将数组的大小从(10*6), (6*3), (6*10)增加到(1000000*6), (6*3), (6*10)时返回的数据的一半我已经检查了内存使用情况,它在GPU的内存中使用的最大值为91MB。有没有办法解决它,还是物理限制?

from __future__ import division

KERNEL_CODE = """
// Thread block size
#define BLOCK_SIZE %(block_size)d
// Matrix dimensions
// (chosen as multiples of the thread block size for simplicity)
#define WA %(w_a)d // Matrix A width
#define HA %(h_a)d // Matrix A height
#define WB %(w_b)d // Matrix B width
#define HB WA  // Matrix B height
#define WC WB  // Matrix C width
#define HC HA  // Matrix C height
/*
 * Copyright 1993-2009 NVIDIA Corporation.  All rights reserved.
 *
 * NVIDIA Corporation and its licensors retain all intellectual property and
 * proprietary rights in and to this software and related documentation.
 * Any use, reproduction, disclosure, or distribution of this software
 * and related documentation without an express license agreement from
 * NVIDIA Corporation is strictly prohibited.
 *
 * Please refer to the applicable NVIDIA end user license agreement (EULA)
 * associated with this source code for terms and conditions that govern
 * your use of this NVIDIA software.
 *
 */
/* Matrix multiplication: C = A * B.
 * Device code.
 */
#define AS(j, i) As[i + j * BLOCK_SIZE]
#define BS(j, i) Bs[i + j * BLOCK_SIZE]
////////////////////////////////////////////////////////////////////////////////
//! Matrix multiplication on the device: C = A * B
//! WA is A's width and WB is B's width
////////////////////////////////////////////////////////////////////////////////
__kernel __attribute__((reqd_work_group_size(16,16,1))) 
void
matrixMul( __global float* C, __global float* A, __global float* B)
{
    __local float As[BLOCK_SIZE*BLOCK_SIZE];
    __local float Bs[BLOCK_SIZE*BLOCK_SIZE];
    // Block index
    int bx = get_group_id(0);
    int by = get_group_id(1);
    // Thread index
    int tx = get_local_id(0);
    int ty = get_local_id(1);
    // Index of the first sub-matrix of A processed by the block
    int aBegin = WA * BLOCK_SIZE * by;
    // Index of the last sub-matrix of A processed by the block
    int aEnd   = aBegin + WA - 1;
    // Step size used to iterate through the sub-matrices of A
    int aStep  = BLOCK_SIZE;
    // Index of the first sub-matrix of B processed by the block
    int bBegin = BLOCK_SIZE * bx;
    // Step size used to iterate through the sub-matrices of B
    int bStep  = BLOCK_SIZE * WB;
    // Csub is used to store the element of the block sub-matrix
    // that is computed by the thread
    float Csub = 0.0f;
    // Loop over all the sub-matrices of A and B
    // required to compute the block sub-matrix
    for (int a = aBegin, b = bBegin;
             a <= aEnd;
             a += aStep, b += bStep) {
        // Load the matrices from device memory
        // to shared memory; each thread loads
        // one element of each matrix
        AS(ty, tx) = A[a + WA * ty + tx];
        BS(ty, tx) = B[b + WB * ty + tx];
        // Synchronize to make sure the matrices are loaded
        barrier(CLK_LOCAL_MEM_FENCE);
        // Multiply the two matrices together;
        // each thread computes one element
        // of the block sub-matrix
        for (int k = 0; k < BLOCK_SIZE; ++k)
            Csub += AS(ty, k) * BS(k, tx);
        // Synchronize to make sure that the preceding
        // computation is done before loading two new
        // sub-matrices of A and B in the next iteration
        barrier(CLK_LOCAL_MEM_FENCE);
    }
    // Write the block sub-matrix to device memory;
    // each thread writes one element
    C[get_global_id(1) * get_global_size(0) + get_global_id(0)] = Csub;
}
"""

import pyopencl as cl
from time import time
import numpy

block_size = 16

ctx = cl.create_some_context()

for dev in ctx.devices:
    assert dev.local_mem_size > 0

queue = cl.CommandQueue(ctx,
        properties=cl.command_queue_properties.PROFILING_ENABLE)

#queue = cl.CommandQueue(ctx)


a_width = 16
a_height = 1000000*16
b_width = 16
b_height = a_width

c_width = b_width
c_height = a_height

h_a = numpy.random.rand(a_height, a_width).astype(numpy.float32)
h_b = numpy.random.rand(b_height, b_width).astype(numpy.float32)
h_c = numpy.empty((c_height, c_width)).astype(numpy.float32)


kernel_params = {"block_size": block_size,
        "w_a":a_width, "h_a":a_height, "w_b":b_width}

prg = cl.Program(ctx, KERNEL_CODE % kernel_params,
        ).build(options="-cl-mad-enable -cl-fast-relaxed-math")
kernel = prg.matrixMul
#print prg.binaries[0]

assert a_width % block_size == 0
assert a_height % block_size == 0
assert b_width % block_size == 0

# transfer host -> device -----------------------------------------------------
mf = cl.mem_flags

t1 = time()

d_a_buf = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=h_a)
d_b_buf = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=h_b)
d_c_buf = cl.Buffer(ctx, mf.WRITE_ONLY, size=h_c.nbytes)

push_time = time()-t1

# warmup ----------------------------------------------------------------------
for i in range(1):
    event = kernel(queue, h_c.shape, (block_size, block_size), 
            d_c_buf, d_a_buf, d_b_buf)
    event.wait()

queue.finish()

# actual benchmark ------------------------------------------------------------
t1 = time()

count = 20
for i in range(count):
    event = kernel(queue, h_c.shape, (block_size, block_size),
            d_c_buf, d_a_buf, d_b_buf)

event.wait()

gpu_time = (time()-t1)/count

# transfer device -> host -----------------------------------------------------
t1 = time()
cl.enqueue_read_buffer(queue, d_c_buf, h_c).wait()
pull_time = time()-t1

# timing output ---------------------------------------------------------------
gpu_total_time = gpu_time+push_time+pull_time

print "GPU push+compute+pull total [s]:", gpu_total_time
print "GPU push [s]:", push_time
print "GPU pull [s]:", pull_time
print "GPU compute (host-timed) [s]:", gpu_time
print "GPU compute (event-timed) [s]: ", (event.profile.end-event.profile.start)*1e-9

gflop = h_c.size * (a_width * 2.) / (1000**3.)
gflops = gflop / gpu_time

print
print "GFlops/s:", gflops

# cpu comparison --------------------------------------------------------------
t1 = time()
h_c_cpu = numpy.dot(h_a,h_b)
cpu_time = time()-t1

print
print "GPU==CPU:",numpy.allclose(h_c, h_c_cpu)
print
print "CPU time (s)", cpu_time
print

print "GPU speedup (with transfer): ", cpu_time/gpu_total_time
print "GPU speedup (without transfer): ", cpu_time/gpu_time

print h_c

0 个答案:

没有答案