过去一周来,我一直受python的困扰,终于可以工作了,但是可以使用一些帮助来加快它的速度
该功能从汽车CAN总线上注销.CSV日志,并将其简化为与一组消息ID和遇到的消息ID匹配的记录列表。
文件为500,000行至50,000,000行。目前,我的笔记本电脑每行大约需要3.2uS。
CSV文件行如下所示:
Time [s],Packet,Type,Identifier,Control,Data,CRC,ACK
0.210436250000000,0,DATA,0x0CFAE621,0x8,0x02 0x50 0x00 0x00 0x04 0x01 0x00 0x29,0x19A8,NAK
...
...
52.936353750000002,15810,DATA,0x18FC07F4,0x8,0xF0 0x09 0x00 0x00 0xCE 0x03 0x92 0x20,0x0C47,ACK
所以第4个条目“ 0x0CFAE621”是消息ID,第6个条目“ 0xF0 0x09 0x00 0x00 0xCE 0x03 0x92 0x20”是数据
这用0x00FFFF00屏蔽,如果匹配则另存为[0xFAE600,'F0','09','00','00','CE','03','92','20'],尽管理想情况下,我想在此时将所有数据都转换为int,用int()包裹每个数据似乎非常缓慢(当时我想我可以通过命令进行十六进制-Int转换来改善它,但我没有确定如何做到)
len()和tree是由于消息数据可以为8条记录而为空,我再次觉得可能有更好的方法来完成此操作。
from tkinter import filedialog
from tkinter import Tk
import timeit
Tk().withdraw()
filename = filedialog.askopenfile(title="Select .csv log file", filetypes=(("CSV files", "*.csv"), ("all files", "*.*")))
if not filename:
print("No File Selected")
else:
CanIdentifiers = set()
CanRecordData = []
IdentifierList = {0x00F00100,0x00F00400,0x00FC0800,0x00FE4000,0x00FE4E00,0x00FE5A00,0x00FE6E00,0x00FEC100,0x00FEC300,0x00FECA00,0x00FEF100}
mask = 0x00FFFF00
loopcount = 0
error = 0
csvtype = 0
start_time = timeit.default_timer()
for line in filename.readlines():
message = line.split(',')
if csvtype == 1:
if message[2] == "DATA":
messageidentifier = int(message[3], 16) & mask
if messageidentifier not in CanIdentifiers:
CanIdentifiers.add(messageidentifier)
if messageidentifier in IdentifierList:
messagedata = message[5].split("0x")
size1 = len(messagedata)
if size1 == 2:
CanRecordData.append((messageidentifier, messagedata[1]))
if size1 == 3:
CanRecordData.append((messageidentifier, messagedata[1], messagedata[2]))
if size1 == 4:
CanRecordData.append((messageidentifier, messagedata[1], messagedata[2], messagedata[3]))
if size1 == 5:
CanRecordData.append((messageidentifier, messagedata[1], messagedata[2], messagedata[3], messagedata[4]))
if size1 == 6:
CanRecordData.append((messageidentifier, messagedata[1], messagedata[2], messagedata[3], messagedata[4], messagedata[5]))
if size1 == 7:
CanRecordData.append((messageidentifier, messagedata[1], messagedata[2], messagedata[3], messagedata[4], messagedata[5], messagedata[6]))
if size1 == 8:
CanRecordData.append((messageidentifier, messagedata[1], messagedata[2], messagedata[3], messagedata[4], messagedata[5], messagedata[6], messagedata[7]))
if size1 == 9:
CanRecordData.append((messageidentifier, messagedata[1], messagedata[2], messagedata[3], messagedata[4], messagedata[5], messagedata[6], messagedata[7], messagedata[8]))
if csvtype == 0:
if message[0] == "Time [s]":
csvtype = 1
error += 1
if error == 50:
break
loopcount += 1
readtime = (timeit.default_timer() - start_time) * 1000000
print(loopcount, "Records Processed at", readtime/loopcount, "uS per Record")
答案 0 :(得分:3)
Pandas的read_csv()
将为您提供一个数据框:
Time [s] Packet Type Identifier Control Data CRC ACK
0 0.210436 0 DATA 0x0CFAE621 0x8 0x02 0x50 0x00 0x00 0x04 0x01 0x00 0x29 0x19A8 NAK
1 52.936354 15810 DATA 0x18FC07F4 0x8 0xF0 0x09 0x00 0x00 0xCE 0x03 0x92 0x20 0x0C47 ACK
然后,根据需要拆分数据字节:
import pandas as pd
df = pd.read_csv('t.csv')
df.Data.str.split(expand=True)
哪个给你:
0 1 2 3 4 5 6 7
0 0x02 0x50 0x00 0x00 0x04 0x01 0x00 0x29
1 0xF0 0x09 0x00 0x00 0xCE 0x03 0x92 0x20
这将比Python循环快得多,并且存储也将更加紧凑-特别是如果您将十六进制数字解析为实际整数:convert pandas dataframe column from hex string to int