在mnist数据集上经过很少的时期后,测试集的准确性非常高

时间:2019-01-23 20:03:11

标签: machine-learning deep-learning pytorch

在很少的时期内,该模型学会了非常快速地在1和0之间进行分类,这使我认为出了点问题。

以下代码下载mnist数据集,提取仅包含1或0的mnist图像。从该mnist图像子集中选择大小为200的随机样本。该随机样本是训练模型的数据集。仅用2个时间段,该模型即可达到90%以上的测试设置精度,这是预期的行为吗?我预计将需要更多的时间来训练模型以达到此级别的测试集准确性。

型号代码:

%reset -f

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import torch.utils.data as data_utils
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_moons
from matplotlib import pyplot
from pandas import DataFrame
import torchvision.datasets as dset
import os
import torch.nn.functional as F
import time
import random
import pickle
from sklearn.metrics import confusion_matrix
import pandas as pd
import sklearn


trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))])

root = './data'
if not os.path.exists(root):
    os.mkdir(root)
train_set = dset.MNIST(root=root, train=True, transform=trans, download=True)
test_set = dset.MNIST(root=root, train=False, transform=trans, download=True)

batch_size = 64

train_loader = torch.utils.data.DataLoader(
                 dataset=train_set,
                 batch_size=batch_size,
                 shuffle=True)
test_loader = torch.utils.data.DataLoader(
                dataset=test_set,
                batch_size=batch_size,
shuffle=True)

class NeuralNet(nn.Module):
    def __init__(self):
        super(NeuralNet, self).__init__()
        self.fc1 = nn.Linear(28*28, 500)
        self.fc2 = nn.Linear(500, 256)
        self.fc3 = nn.Linear(256, 2)
    def forward(self, x):
        x = x.view(-1, 28*28)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

num_epochs = 2
random_sample_size = 200

values_0_or_1 = [t for t in train_set if (int(t[1]) == 0 or int(t[1]) == 1)]
values_0_or_1_testset = [t for t in test_set if (int(t[1]) == 0 or int(t[1]) == 1)]

print(len(values_0_or_1))
print(len(values_0_or_1_testset))

train_loader_subset = torch.utils.data.DataLoader(
                 dataset=values_0_or_1,
                 batch_size=batch_size,
                 shuffle=True)

test_loader_subset = torch.utils.data.DataLoader(
                 dataset=values_0_or_1_testset,
                 batch_size=batch_size,
                 shuffle=False)

train_loader = train_loader_subset

# Hyper-parameters 
input_size = 100
hidden_size = 100
num_classes = 2
# learning_rate = 0.00001
learning_rate = .0001
# Device configuration
device = 'cpu'
print_progress_every_n_epochs = 1

model = NeuralNet().to(device)

# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)  

N = len(train_loader)
# Train the model
total_step = len(train_loader)

most_recent_prediction = []
test_actual_predicted_dict = {}

rm = random.sample(list(values_0_or_1), random_sample_size)
train_loader_subset = data_utils.DataLoader(rm, batch_size=4)

for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader_subset):  
        # Move tensors to the configured device
        images = images.reshape(-1, 2).to(device)
        labels = labels.to(device)

        # Forward pass
        outputs = model(images)
        loss = criterion(outputs, labels)

        # Backward and optimize
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

    if (epoch) % print_progress_every_n_epochs == 0:
        print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, total_step, loss.item()))


predicted_test = []
model.eval()  # eval mode (batchnorm uses moving mean/variance instead of mini-batch mean/variance)
probs_l = []

predicted_values = []
actual_values = []
labels_l = []

with torch.no_grad():
    for images, labels in test_loader_subset:
        images = images.to(device)
        labels = labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        predicted_test.append(predicted.cpu().numpy())

        sm = torch.nn.Softmax()
        probabilities = sm(outputs) 
        probs_l.append(probabilities)  
        labels_l.append(labels.cpu().numpy())

    predicted_values.append(np.concatenate(predicted_test).ravel())
    actual_values.append(np.concatenate(labels_l).ravel())

if (epoch) % 1 == 0:
    print('test accuracy : ', 100 * len((np.where(np.array(predicted_values[0])==(np.array(actual_values[0])))[0])) / len(actual_values[0]))

模型的输出(12665和2115代表训练和测试集的大小):

12665
2115
Epoch [1/2], Step [50/198], Loss: 0.1256
Epoch [2/2], Step [50/198], Loss: 0.0151
test accuracy :  99.76359338061465

/anaconda3/envs/pytorch/lib/python3.7/site-packages/ipykernel_launcher.py:143: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.

2 个答案:

答案 0 :(得分:0)

这不是一个特别恰当的问题,因为期望是完全主观的。话虽如此, I 并不感到惊讶,因为01是非常不同的数字。例如,0的背景被前景包围,而1则没有-这是区分两者的几乎可靠的测试。作为健全性检查,我将0换成7,这与1类似。我希望看到成功率会大大降低。话虽如此,这是一个健全的检查-即使通过了,您的方法中仍然可能存在错误或错误。

答案 1 :(得分:0)

这是我在二元实验中的2美分。

您似乎已经大大降低了数据集的复杂性,并且由于中间层中神经元的数量众多,因此您的模型有望很快收敛。

请注意,MNIST数据集的通道为1,这使任务非常简单。

您可以尝试使用CIFAR10,看看是否仅在2个时期内仍能获得较高的精度。