我想不出能让这段代码更快的方法。是否有运行速度更快的应用功能?现在,我使用for循环并行运行这个循环,它仍然需要很长时间。
ndraws=20000
nhousehold=18831
m=12
elasticitydraws = array(0,c(m,ndraws,nhousehold))
MAPelasticity = matrix(0,nhousehold,m)
medianpricemat = matrix(rnorm(12,15,1),12,1)
# dim(out$betadraw) = 18831, 12, 20000
# dim(medianpricemat) = 12, 1
library(foreach)
library(doMC)
registerDoMC(10)
elasticitylist = foreach(i=1:nhousehold) %dopar% {
pricedraws = out$betadraw[i,12,]
elasticitydraws[,,i]= probarray[,,i] %*% diag(pricedraws)
elasticitydraws[,,i] = elasticitydraws[,,i] * as.vector(medianpricemat)
MAPelasticity[i,] = apply(elasticitydraws[,,i],1,mean)
}
答案 0 :(得分:2)
代码中的瓶颈是创建一个大密集对角矩阵和矩阵乘法。最好使用稀疏矩阵和Matrix
包。这节省了内存和计算时间。我还包括了卡尔的评论,并在循环之外创建了一些向量。
library(Matrix)
medianpricemat <- as.vector(medianpricemat)
D1 <- Diagonal(x=pricedraws)
elasticitylist = foreach(i=1:nhousehold) %dopar% {
pricedraws = out$betadraw[i,12,]
tmp = probarray[,,i] %*% D1
elasticitydraws[,,i] = as.matrix(tmp) * medianpricemat
MAPelasticity[i,] = rowMeans(elasticitydraws[,,i])
}
不太明显的黑客是避免创建对角矩阵和 矩阵乘法:
D2 <- rep(pricedraws, each=m)
elasticitylist = foreach(i=1:nhousehold) %dopar% {
pricedraws = out$betadraw[i,12,]
tmp = probarray[,,i] * D2 # element wise multiplication
elasticitydraws[,,i] = as.matrix(tmp) * medianpricemat
MAPelasticity[i,] = rowMeans(elasticitydraws[,,i])
}